Skip to main content
Log in

Thoracic load carriage-induced respiratory muscle fatigue

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

We investigated the effect of carrying a 25 kg backpack upon exercise-induced respiratory muscle fatigue, pulmonary function and physiological and perceptual responses to exercise.

Methods

Nineteen healthy males performed 60 min walking at 6.5 km h−1 and 0 % gradient with a 25 kg backpack (load carriage; LC). Following 15 min recovery participants then completed a 2.4 km time trial with the load (LCTT) and on a different day, repeated the trials without the load [control trial (CON) and control time trial (CONTT), respectively]. Respiratory muscle fatigue was determined by the transient change in maximal inspiratory (P Imax) and expiratory (P Emax) pressure prior to and immediately following exercise.

Results

P Imax and P Emax were reduced from baseline by 11 and 13 % (P < 0.05), respectively, post-LC but remained unchanged post-CON. Following the time trial P Imax and P Emax were reduced 16 and 19 %, respectively, post-LCTT (P < 0.05) and by 6 and 10 %, respectively (P < 0.05), post-CONTT compared to baseline. Both forced vital capacity and forced expiratory volume in 1 s were reduced by 4 ± 13 and 1 ± 9 %, respectively, during LC when compared to CON. Relative to CON all physiological and perceptual responses were greater in LC, both post-LC and -LCTT (P < 0.01). Time trial performance was faster during CONTT (11.08 ± 1.62 min) relative to LCTT (15.93 ± 1.91 min; P < 0.05).

Conclusion

This study provides novel evidence that constant speed walking and time trial exercise with 25 kg thoracic load carriage induces significant inspiratory and expiratory muscle fatigue and may have important performance implications in some recreational and occupational settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CON:

Control trial

CONTT :

Control time trial

FEV1 :

Forced expiratory volume in 1 s

FVC:

Forced vital capacity

[glucose]B :

Blood glucose

HR:

Heart rate

[lac]B :

Blood lactate

LC:

Load carriage trial

LCTT :

Load carriage time trial

PEF:

Peak expiratory flow

P Imax :

Maximal inspiratory mouth pressure

P Emax :

Maximal expiratory mouth pressure

RER:

Respiratory exchange ration

\(\dot{V}\) E :

Minute ventilation

\(\dot{V}\)CO2 :

Carbon dioxide production

\(\dot{V}\)O2 :

Oxygen consumption

References

  • Aliverti A (2008) Lung and chest wall mechanics during exercise: effects of expiratory flow limitation. Respir Physiol Neurobiol 163(1):90–99

    Article  PubMed  Google Scholar 

  • Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43(11):2039–2045

    Article  PubMed  Google Scholar 

  • American Thoracic Society, European Respiratory Society (2002) ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 166(4):518–624. doi:10.1164/rccm.166.4.518

    Article  Google Scholar 

  • American Thoracic Society, European Respiratory Society (2005) Standardisation of spirometry. Eur Respir J 26(2):319–338. doi:10.1183/09031936.05.00034805

    Article  Google Scholar 

  • Bastien GJ, Willems PA, Schepens B, Heglund NC (2005) Effect of load and speed on the energetic cost of human walking. Eur J Appl Physiol 94(1–2):76–83

    Article  PubMed  CAS  Google Scholar 

  • Birrell SA, Haslam RA (2010) The effect of load distribution within military load carriage systems on the kinetics of human gait. Appl Ergon 41(4):585–590

    Article  PubMed  Google Scholar 

  • Blacker SD, Williams NC, Fallowfield JL, Bilzon JL, Willems ME (2010) Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage. J Int Soc Sports Nutr 7(1):1–11

    Article  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  PubMed  CAS  Google Scholar 

  • Brown PI, McConnell AK (2012) Respiratory-related limitations in physically demanding occupations. Aviat Space Environ Med 83(4):424–430

    Article  PubMed  Google Scholar 

  • Brown PI, Hughes MG, Tong RJ (2008) The effect of warm-up on high-intensity, intermittent running using nonmotorized treadmill ergometry. J Strength Cond Res 22(3):801–808

    Article  PubMed  Google Scholar 

  • Brown PI, Sharpe GR, Johnson MA (2012) Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise. Eur J Appl Physiol 112(6):2117–2129

    Article  PubMed  CAS  Google Scholar 

  • Butcher SJ, Jones RL, Mayne JR, Hartley TC, Petersen SR (2007) Impaired exercise ventilatory mechanics with the self-contained breathing apparatus are improved with heliox. Eur J Appl Physiol 101(6):659–669

    Article  PubMed  Google Scholar 

  • Dominelli PB, Sheel AW, Foster GE (2012) Effect of carrying a weighted backpack on lung mechanics during treadmill walking in healthy men. Eur J Appl Physiol 112(6):2001–2012

    Article  PubMed  Google Scholar 

  • Eves ND, Jones RL, Petersen SR (2005) The influence of the self-contained breathing apparatus (SCBA) on ventilatory function and maximal exercise. Can J Appl Physiol 30(5):507–519

    Article  PubMed  Google Scholar 

  • Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82(5):1573–1583

    PubMed  CAS  Google Scholar 

  • Hodges PW, Butler JE, McKenzie DK, Gandevia SC (1997) Contraction of the human diaphragm during rapid postural adjustments. J Physiol 505(2):539–548

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hodges PW, Heijnen I, Gandevia SC (2001) Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J Physiol 537(3):999–1008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Janssens L, Brumagne S, Polspoel K, Troosters T, McConnell A (2010) The effect of inspiratory muscles fatigue on postural control in people with and without recurrent low back pain. Spine 35(10):1088

    PubMed  Google Scholar 

  • Johnson MA, Sharpe GR, Brown PI (2007) Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl Physiol 101(6):761–770

    Article  PubMed  Google Scholar 

  • Knapik J, Harman E, Reynolds K (1996) Load carriage using packs: a review of physiological, biomechanical and medical aspects. Appl Ergon 27(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Leddy JJ, Limprasertkul A, Patel S, Modlich F, Buyea C, Pendergast DR, Lundgren CE (2007) Isocapnic hyperpnea training improves performance in competitive male runners. Eur J Appl Physiol 99(6):665–676

    Article  PubMed  Google Scholar 

  • Marcora S (2009) Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol 106(6):2060–2062

    Article  PubMed  Google Scholar 

  • McClaran SR, Wetter TJ, Pegelow DF, Dempsey JA (1999) Role of expiratory flow limitation in determining lung volumes and ventilation during exercise. J Appl Physiol 86(4):1357–1366

    Google Scholar 

  • Muza SR, Latzka WA, Epstein Y, Pandolf KB (1989) Load carriage induced alterations of pulmonary function. Int J Ind Ergon 3(3):221–227

    Article  Google Scholar 

  • Nadiv Y, Vachbroit R, Gefen A, Elad D, Zaretsky U, Moran D, Halpern P, Ratnovsky A (2012) Evaluation of fatigue of respiratory and lower limb muscles during prolonged aerobic exercise. J Appl Biomech 28(2):139

    PubMed  Google Scholar 

  • Pandolf KB, Givoni B, Goldman RF (1977) Predicting energy expenditure with loads while standing or walking very slowly. DTIC Document. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA047699

  • Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH et al (2012) Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 40(6):1324–1343

    Article  PubMed Central  PubMed  Google Scholar 

  • Rayson M, Holliman D, Belyavin A (2000) Development of physical selection procedures for the British Army. Phase 2: relationship between physical performance tests and criterion tasks. Ergonomics 43(1):73–105

    Article  PubMed  CAS  Google Scholar 

  • Richmond VL, Rayson MP, Wilkinson DM, Carter JM, Blacker SD (2008) Physical demands of firefighter search and rescue in ambient environmental conditions. Ergonomics 51(7):1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Romer LM, McConnell AK (2004) Respiratory muscle training in healthy humans: resolving the controversy. Int J Sports Med 25:284–293

    Article  PubMed  Google Scholar 

  • Romer LM, McConnell AK, Jones DA (2002) Effects of inspiratory muscle training on time-trial performance in trained cyclists. J Sports Sci 20(7):547–590

    Article  PubMed  Google Scholar 

  • Romer LM, Lovering AT, Haverkamp HC, Pegelow DF, Dempsey JA (2006) Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans. J Physiol 571(2):425–439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ross E, Middleton N, Shave R, George K, McConnell A (2008) Changes in respiratory muscle and lung function following marathon running in man. J Sports Sci 26(12):1295–1301

    Article  PubMed  Google Scholar 

  • Sheel AW, Romer LM (2012) Ventilation and respiratory mechanics. Compr Physiol 2(2):1093–1142

    Google Scholar 

  • Shirley D, Hodges PW, Eriksson AEM, Gandevia SC (2003) Spinal stiffness changes throughout the respiratory cycle. J Appl Physiol 95(4):1467–1475

    PubMed  CAS  Google Scholar 

  • Tomczak SE, Guenette JA, Reid WD, McKenzie DC, Sheel AW (2011) Diaphragm fatigue after submaximal exercise with chest wall restriction. Med Sci Sports Exerc 43(3):416–424

    Article  PubMed  Google Scholar 

  • Verges S, Lenherr O, Haner AC, Schulz C, Spengler CM (2007) Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol-Regul Integr Comp Physiol 292(3):R1246–R1253

    Article  PubMed  CAS  Google Scholar 

  • Volianitis S, McConnell AK, Koutedakis Y, McNaughton LR, Backx K, Jones DA (2001) Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc 33(5):803–809

    Article  PubMed  CAS  Google Scholar 

  • Wilson SH, Cooke NT, Edwards RH, Spiro SG (1984) Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 39(7):535–538

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No conflicts of interest for each of the authors.

Ethical standards

All experimental procedures and methods of assessment used in this study were ethically approved by the host universities ethics committee and conform to the laws of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Faghy.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faghy, M.A., Brown, P.I. Thoracic load carriage-induced respiratory muscle fatigue. Eur J Appl Physiol 114, 1085–1093 (2014). https://doi.org/10.1007/s00421-014-2839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2839-4

Keywords

Navigation