Skip to main content
Log in

Gradient compression garments protect against orthostatic intolerance during recovery from bed rest

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Abdomen-high, lower body graded compression garments (GCGs) may represent the next-generation of orthostatic intolerance protection with applications for exploration missions and commercial space flight.

Purpose

To evaluate the efficacy of the GCG to prevent orthostatic intolerance after a 14-day 6° head-down tilt bed rest (BR) and to determine whether wearing thigh-high compression garments impairs recovery from BR.

Methods

Sixteen (12 M, 4 F) subjects participated in a 15-min 80° head-up tilt test 5 day before BR (BR-5), on the last morning of BR (BR+0), and on day 1 (BR+1) and 3 after BR (BR+3). No subjects wore the GCG on BR-5, and all subjects wore the GCG during testing on BR+0. Control subjects (n = 8) wore the GCG only through testing on BR+0. Treatment subjects (n = 8) wore the GCG on BR+0 and thigh-high garments on BR+1 and BR+2.

Results

No subjects were presyncopal during tilt on BR+0 while wearing the GCG. Despite lower plasma volume index (BR-5: 1.52 ± 0.06, BR+0: 1.32 ± 0.05 l/m2), the tilt-induced increase in heart rate (ΔHR, 17 ± 2 bpm) and decrease in stroke volume (ΔSV, −28 ± 3 ml) on BR+0 were less than on BR-5 (24 ± 2 bpm, −43 ± 4 ml). On BR+1 ΔHR in the control group (33 ± 4 bpm) was higher than in the treatment group (23 ± 2 bpm) but there were no group differences on BR+3.

Conclusions

Wearing the GCG prevented the orthostatic intolerance that is normally present after BR. Thigh-high garments provided protection after BR, and wearing these garments did not impair recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbeille P, Kerbeci P, Mattar L et al (2008) Insufficient flow reduction during LBNP in both splanchnic and lower limb areas is associated with orthostatic intolerance after bedrest. Am J Physiol Heart Circ Physiol 295:H1846–H1854. doi:10.1152/ajpheart.509.2008

    Article  CAS  PubMed  Google Scholar 

  • Baevsky RM, Baranov VM, Funtova II et al (2007) Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J Appl Physiol 103:156–161. doi:10.1152/japplphysiol.00137.2007

    Article  PubMed  Google Scholar 

  • Bishop PA, Lee SM, Conza NE et al (1999) Carbon dioxide accumulation, walking performance, and metabolic cost in the NASA launch and entry suit. Aviat Space Environ Med 70:656–665

    CAS  PubMed  Google Scholar 

  • Buckey JC, Lane LD, Levine BD et al (1996) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18

    PubMed  Google Scholar 

  • Burge CM, Skinner SL (1995) Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method. J Appl Physiol 79:623–631

    CAS  PubMed  Google Scholar 

  • Denq JC, Opfer-Gehrking TL, Giuliani M et al (1997) Efficacy of compression of different capacitance beds in the amelioration of orthostatic hypotension. Clin Auton Res 7:321–326

    Article  CAS  PubMed  Google Scholar 

  • Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol 81:2134–2141. doi:8941538

    CAS  PubMed  Google Scholar 

  • Garshnek V (1989) Long-duration Soviet manned space flight: the development and implementation of post-flight recovery measures. In: Lorr DB, Garshnek V, Cadoux C (eds) Working in orbit and beyond: the challenges for space medicine. Univelt, American Astronautical Society, San Diego, pp 127–132

    Google Scholar 

  • Hoffler GW, Johnson RL (1975) Apollo flight crew cardiovascular evaluations. Biomedical results of Apollo. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC, pp 227–264

    Google Scholar 

  • Johnson RL, Hoffler GW, Nicogossian AE et al (1977) Lower body negative pressure: third manned Skylab mission. Biomedical results from Skylab. Scientific and Technical Information Office, National Aeronautics and Space Administration: [for sale by the Supt. of Docs., U.S. Govt. Print. Off.], Washington, DC, pp 284–312

  • Lanier JB, Mote MB, Clay EC (2011) Evaluation and management of orthostatic hypotension. Am Fam Physician 84:527–536

    PubMed  Google Scholar 

  • Lateef F, Kelvin T (2008) Military anti-shock garment: historical relic or a device with unrealized potential? J Emerg Trauma Shock 1:63–69. doi:10.4103/0974-2700.43181

    Article  PubMed Central  PubMed  Google Scholar 

  • LeBlanc A, Lin C, Shackelford L et al (2000) Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol 89:2158–2164

    CAS  PubMed  Google Scholar 

  • Lee SM, Moore AD, Fritsch-Yelle JM et al (1999) Inflight exercise affects stand test responses after space flight. Med Sci Sports Exerc 31:1755–1762

    Article  CAS  PubMed  Google Scholar 

  • Lee SMC, Guined JR, Brown AK et al (2011) Metabolic consequences of garments worn to protect against post-spaceflight orthostatic intolerance. Aviat Space Environ Med 82:648–653

    Article  PubMed  Google Scholar 

  • Levine BD, Zuckerman JH, Pawelczyk JA (1997) Cardiac atrophy after bed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation 96:517–525

    Article  CAS  PubMed  Google Scholar 

  • Meck JV, Reyes CJ, Perez SA et al (2001) Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts. Psychosom Med 63:865–873

    CAS  PubMed  Google Scholar 

  • Meck JV, Waters WW, Ziegler MG et al (2004) Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol 286:H1486–H1495. doi:10.1152/ajpheart.00740.2003

    Article  CAS  PubMed  Google Scholar 

  • Meck JV, Dreyer SA, Warren LE (2009) Long-duration head-down bed rest: project overview, vital signs, and fluid balance. Aviat Space Environ Med 80:A1–A8

    Article  PubMed  Google Scholar 

  • Perez SA, Charles JB, Fortner GW et al (2003) Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat Space Environ Med 74:753–757

    PubMed  Google Scholar 

  • Platts SH, Martin DS, Stenger MB et al (2009a) Cardiovascular adaptations to long-duration head-down bed rest. Aviat Space Environ Med 80:A29–A36

    Article  PubMed  Google Scholar 

  • Platts SH, Tuxhorn JA, Ribeiro LC et al (2009b) Compression garments as countermeasures to orthostatic intolerance. Aviat Space Environ Med 80:437–442

    Article  PubMed  Google Scholar 

  • Schneider SM, Watenpaugh DE, Lee SMC et al (2002) Lower-body negative-pressure exercise and bed-rest-mediated orthostatic intolerance. Med Sci Sports Exerc 34:1446–1453. doi:10.1249/01.MSS.0000027761.31366.06

    Article  PubMed  Google Scholar 

  • Shibao C, Lipsitz LA, Biaggioni I (2013) ASH position paper: evaluation and treatment of orthostatic hypotension. J Clin Hypertens 15:147–153. doi:10.1111/jch.12062

    Article  CAS  Google Scholar 

  • Smit AAJ, Wieling W, Fujimura J et al (2004) Use of lower abdominal compression to combat orthostatic hypotension in patients with autonomic dysfunction. Clin Auton Res 14:167–175. doi:10.1007/s10286-004-0187-x

    Article  PubMed  Google Scholar 

  • Stenger MB, Brown AK, Lee SMC et al (2010) Gradient compression garments as a countermeasure to post-spaceflight orthostatic intolerance. Aviat Space Environ Med 81:883–887

    Article  PubMed  Google Scholar 

  • Stenger MB, Lee SMC, Westby CM et al (2013) Abdomen-high elastic gradient compression garments during post-spaceflight stand tests. Aviat Space Environ Med 84:459–466. doi:10.3357/ASEM 3528.2013

    Article  PubMed  Google Scholar 

  • Thornton WE, Hoffler GW, Rummel J (1976) Anthropometric changes and fluid shifts. Biomedical results from Skylab. Scientific and Technical Information Office, National Aeronautics and Space Administration: [for sale by the Supt. of Docs., U.S. Govt. Print. Off.], pp 330–339

  • Thornton WE, Moore TP, Pool SL (1987) Fluid shifts in weightlessness. Aviat Space Environ Med 58:A86–A90

    CAS  PubMed  Google Scholar 

  • Vil-Viliams IF, Kotovskaya AR, Gavrilova LN et al (1998) Human +Gx tolerance with the use of anti-G suits during descent from orbit of the Soyuz space vehicles. J Gravit Physiol 5:P129–P130

    CAS  PubMed  Google Scholar 

  • Watanuki S, Murata H (1994) Effects of wearing compression stockings on cardiovascular responses. Ann Physiol Anthropol 13:121–127

    Article  CAS  PubMed  Google Scholar 

  • Waters WW, Ziegler MG, Meck JV (2002) Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol 92:586–594. doi:11796668

    PubMed  Google Scholar 

  • Waters WW, Platts SH, Mitchell BM et al (2005) Plasma volume restoration with salt tablets and water after bed rest prevents orthostatic hypotension and changes in supine hemodynamic and endocrine variables. Am J Physiol Heart Circ Physiol 288:H839–H847. doi:10.1152/ajpheart.00220.2004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the subjects who participated in this study; Kevin Tucker and Mary Ann Hettich of BSN-medical, Inc. who collaborated in the design and constructed the GCG for this and our previous Space Shuttle study; the JSC Cardiovascular Laboratory personnel who were responsible for collecting and analyzing the cardiovascular data; the JSC Clinical Laboratory for analyzing the blood samples; the staff at the Flight Analogs Research Unit at UTMB-Galveston who supported the bed rest subjects and coordinated their efforts with ours for a successful project; and Jamie Guined and Jackie Reeves who provided editorial comments to this manuscript. This work was funded by the NASA Human Research Project and supported in part by grant 1UL1RR029876-01 from the National Center for Advancing Translational Sciences, National Institutes of Health.

Conflict of interest

The authors declare that the experiment described complies with the current laws of the United States of America and that the authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Stenger.

Additional information

Communicated by Dag Linnarsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenger, M.B., Lee, S.M.C., Ribeiro, L.C. et al. Gradient compression garments protect against orthostatic intolerance during recovery from bed rest. Eur J Appl Physiol 114, 597–608 (2014). https://doi.org/10.1007/s00421-013-2787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2787-4

Keywords

Navigation