Skip to main content
Log in

Effectiveness of short-term heat acclimation for highly trained athletes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Effectiveness of short-term acclimation has generally been undertaken using untrained and moderately-trained participants. The purpose of this study was to determine the impact of short-term (5-day) heat acclimation on highly trained athletes. Eight males (mean ± SD age 21.8 ± 2.1 years, mass 75.2 ± 4.6 kg, \( \dot{V}\)O2peak 4.9 ± 0.2 L min−1 and power output 400 ± 27 W) were heat acclimated under controlled hyperthermia (rectal temperature 38.5°C), for 90-min on five consecutive days (T a = 39.5°C, 60% relative humidity). Acclimation was undertaken with dehydration (no fluid-intake) during daily bouts. Participants completed a rowing-specific, heat stress test (HST) 1 day before and after acclimation (T a = 35°C, 60% relative humidity). HST consisted 10-min rowing at 30% peak power output (PPO), 10 min at 60% PPO and 5-min rest before a 2-km performance test, without feedback cues. Participants received 250 mL fluid (4% carbohydrate; osmolality 240–270 mmol kg−1) before the HST. Body mass loss during acclimation bouts was 1.6 ± 0.3 kg (2.1%) on day 1 and 2.3 ± 0.4 kg (3.0%) on day 5. In contrast, resting plasma volume increased by 4.5 ± 4.5% from day 1 to 5 (estimated from [Hb] & Hct). Plasma aldosterone increased at rest (52.6 pg mL−1; p = 0.03) and end-exercise (162.4 pg mL−1; p = 0.00) from day 1 to 5 acclimation. During the HST T re and f c were lowered 0.3°C (p = 0.00) and 14 b min−1 (p = 0.00) after 20-min exercise. The 2-km performance time (6.52.7 min) improved by 4 s (p = 0.00). Meaningful physiological and performance improvements occurred for highly trained athletes using a short-term (5-day) heat acclimation under hyperthermia control, with dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allsopp AJ, Sutherland R, Wood P, Wooton SA (1998) The effect of sodium balance on sweat sodium secretion and plasma aldosterone concentration. Eur J Appl Physiol 78:516–521

    Article  CAS  Google Scholar 

  • Armstrong LE, Pandolf KB (1988) Physical training, cardiorespiratory physical fitness and exercise-heat tolerance. In: Pandolf KB, Sawka MN, Gonzalez RR (eds) Human performance physiology and environmental medicine at terrestrial extremes. Benchmark Press, Inc., Indianapolis, pp 199–266

    Google Scholar 

  • Armstrong LE, Maresh CM, Castellani JW, Bergeron MF, Kenefick RW, LaGasse KE, Riebe D (1994) Urinary indices of hydration status. Int J Sport Nutr 4:26–279

    Google Scholar 

  • Armstrong LE, Herrera Soto JA, Hacker FT, Casa DJ, Kavouras SA, Maresh CM (1998) Urinary indices during dehydration, exercise, and rehydration. Int J Sport Nutr 8:345–355

    PubMed  CAS  Google Scholar 

  • Bourdon PC, Laureaux C, Patricot MC, Guezennec CY, Foglietti MJ, Villette VM, Friemel F, Haag JC (1987) Variations of a few plasma and urinary components in marathon runners. Ann Biol Clin 45:37–45

    Google Scholar 

  • Brandenberger G, Candas V, Follenius M, Libert JP, Kahn JM (1986) Vascular fluid shifts and endocrine responses to exercise in the heat. Eur J Appl Physiol 55:123–129

    Article  CAS  Google Scholar 

  • Brandenberger G, Candas V, Follenius M, Kahn JM (1989) The influence of initial state of hydration on endocrine responses to exercise in the heat. Eur J Appl Physiol 58:674–679

    Article  CAS  Google Scholar 

  • Bruck K, Olschewski H (1987) Body temperature related factors diminishing the drive to exercise. Can J Physiol Pharmacol 65:1274–1280

    Article  PubMed  CAS  Google Scholar 

  • Buget A, Gati R, Souburan G (1988) Seasonal changes in circadian rhythms of body temperature in humans living in a tropical dry climate. Eur J Appl Physiol 58:334–339

    Article  Google Scholar 

  • Buono MJ, Heaney JH, Canine KM (1998) Acclimation to humid heat lowers resting core temperature. Am J Physiol 274:R1295–R1299

    PubMed  CAS  Google Scholar 

  • Cheung SS, McLellan TM (1998) Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol 84:1731–1739

    PubMed  CAS  Google Scholar 

  • Concept2 (2011) World rankings for lightweight 2000 m rowing ergometer performance. In: Concept2 (ed)

  • Creasy R (2002) Post-exercise sauna bathing does not improve 2000-metre rowing performance. School of Physical Education. University of Otago, Dunedin, p 78

    Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma and red cells in dehydration. J Appl Physiol 37(2):247–248

    PubMed  CAS  Google Scholar 

  • Fan J-L, Cotter JD, Lucas RAI, Thomas K, Wilson L, Ainslie PN (2008) Human cardiorespiratory and cerebrovascular function during severe passive hyperthermia: effects of mild hypohydration. J Appl Physiol 105:433–445

    Article  PubMed  Google Scholar 

  • Febbraio M, Snow RJ, Hargreaves M, Stathis CG, Martin IK, Carey MF (1994) Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J Appl Physiol 76:589–597

    PubMed  CAS  Google Scholar 

  • Fellman N (1992) Hormonal and plasma volume alterations following endurance exercise. Sports Med 13:37–49

    Article  Google Scholar 

  • Garrett AT, Goossens NG, Rehrer NJ, Patterson MJ, Cotter JD (2009) Induction and decay of short-term heat acclimation. Eur J Appl Physiol 107:659–671

    Article  PubMed  Google Scholar 

  • Gass GC, Camp SN, Nadel ER, Gwinn TH, Engel P (1988) Rectal and rectal versus oesphageal temperatures in paraplegic men during prolonged exercise. J Appl Physiol 64:2265–2271

    PubMed  CAS  Google Scholar 

  • Greenleaf JE, Sargent F II (1965) Voluntary dehydration in man. J Appl Physiol 20:719–724

    PubMed  CAS  Google Scholar 

  • Harrison MH (1985) Effects of thermal stress and exercise on blood volume in humans. Physiol Rev 65:149–209

    PubMed  CAS  Google Scholar 

  • Hettinga FJ, De Koning JJ, de Vrijer A, Wust RCI, Daanen HAM, Foster C (2007) The effect of ambient temperature on gross-efficiency in cycling. Eur J Appl Phys 101:465–471

    Article  Google Scholar 

  • Hopkins WG, Schabort EJ, Hawley JA (2001) Reliability of power in physical performance tests. Sports Med 31:211–234

    Article  PubMed  CAS  Google Scholar 

  • Houmard JA, Costill DL, Davis JA, Mitchell JB, Pascoe DD, Robergs RA (1990) The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc 22:615–620

    Article  PubMed  CAS  Google Scholar 

  • Hubbard RW, Sandick BL, Matthew WT, Francesconi RP, Sampson JR, Durkot MJ, Maller O, Engell DB (1984) Voluntary dehydration and alliesthesia for water. J Appl Physiol Respir Environ Exerc Physiol 57:868–875

    CAS  Google Scholar 

  • Ikegawa S, Kamijo J, Okazaki K, Masuki S, Okada Y, Nose H (2011) Effects of hypohydration on thermoregulation during exercise before and after 5-day aerobic training in a warm environment in young men. J Appl Physiol 110:972–980

    Article  PubMed  Google Scholar 

  • Ingham SA, Whyte GP, Nevill AM (2002) Determinants of 2000 m rowing performance in elite rowers. Eur J Appl Phys 88:243–246

    Article  CAS  Google Scholar 

  • Judelson DA, Maresh CM, Yamamoto LM, Farrell MJ, Armstrong LE, Kraemer WJ, Volek JS, Spiering BA, Casa DJ, Anderson JM (2008) Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism. J Appl Physiol 105:816–824

    Article  PubMed  Google Scholar 

  • Kampmann B, Brode P, Schutte M, Griefahn B (2008) Lowering of resting core temperature during acclimation is influenced by exercise stimulus. Eur J Appl Physiol 104:321–327

    Article  PubMed  Google Scholar 

  • Kenefick RW, Maresh CM, Armstrong LE, Riebe D, Echegaray ME, Castellani JW (2007) Rehydration with fluid of varying tonicities: effects on fluid regulatory hormones and exercise performance in the heat. J Appl Physiol 102:1899–1905

    Article  PubMed  CAS  Google Scholar 

  • Kenny GP, Periard J, Journeay SW, Sigal RJ, Reardon FD (2003) Cutaneous active vasodilation in humans during passive heating postexercise. J Appl Physiol 95:1025–1031

    PubMed  Google Scholar 

  • Lorenzo S, Halliwill JR, Sawka MN, Minson CT (2010) Heat acclimation improves exercise performance. J Appl Physiol 109:1140–1147

    Article  PubMed  Google Scholar 

  • McConell GK, Burge CM, Skinner SL, Hargreaves M (1997) Influence of ingested fluid volume on physiological responses during prolonged exercise. Acta Physiol Scand 160:149–156

    Article  PubMed  CAS  Google Scholar 

  • Morris DJ (1981) The metabolism and mechanism of action of aldosterone. Endocr Rev 2:234–247

    Article  PubMed  CAS  Google Scholar 

  • Moseley PL, Gapen C, Wallen ES, Walter ME, Peterson MW (1994) Thermal stress induces epithelial permeability. Am J Physiol: C425–C434

  • Nagashima K, Mack GW, Haskell A, Nishiyasu T, Nadel ER (1999) Mechanism for the posture-specific plasma volume increase after a single intense exercise protocol. J Appl Physiol 86:867–873

    PubMed  CAS  Google Scholar 

  • Nagashima K, Jauchia W, Stavros A, Kavouras A, Mack GW (2001) Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans. J Appl Physiol 91:1229–1236

    PubMed  CAS  Google Scholar 

  • Nielsen B, Savard A, Richter EA, Hargreaves M, Saltin B (1990) Muscle blood flow and muscle metabolism during exercise and heat stress. J Appl Physiol 69:1040–1046

    PubMed  CAS  Google Scholar 

  • Nielsen B, Hales JRS, Strange S, Christensen JW, Saltin B (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460:467–485

    PubMed  CAS  Google Scholar 

  • Osterberg KL, Pallardy SE, Johnson RJ, Horswill CA (2010) Carbohydrate exerts a mild influence on fluid retention following exercise-induced dehydration. J Appl Physiol 108:245–250

    Article  PubMed  CAS  Google Scholar 

  • Patterson MJ, Stocks JM, Taylor NAS (2004) Sustained and generalised extracellular fluid expansion following heat acclimation. J Physiol 559:327–334

    Article  PubMed  CAS  Google Scholar 

  • Regan JM, Macfarlane DJ, Taylor NAS (1996) An evaluation of the role of skin temperature during heat adaptation. Acta Physiol Scand 158:365–375

    Article  PubMed  CAS  Google Scholar 

  • Sakurada S, Shido O, Sugimoto N, Fujikake K, Nagasaka T (1994) Changes in hypothalamic temperature of rats after daily exposure to heat at a fixed time. Pfluger’s Archiv 429:291–293

    Article  CAS  Google Scholar 

  • Schabort EJ, Hawley JA, Hopkins WG, Blum H (1999) High reliability of well-trained rowers on a rowing ergometer. J Sports Sci 17:627–632

    Article  PubMed  CAS  Google Scholar 

  • Secher NH (1993) Physiological and biomechanical aspects of rowing: implications for training. Sports Med 15:24–42

    Article  PubMed  CAS  Google Scholar 

  • Senay LC, Mitchell D, Wyndam CH (1976) Acclimatization in a hot, humid environment: body fluid adjustments. J Appl Physiol 40:786–796

    PubMed  CAS  Google Scholar 

  • Shido O, Sugimoto N, Tanabe M, Sakurada S (1999) Core temperature and sweating onset in humans acclimated to heat at a fixed daily time. Am J Physiol: R1095–R1101

  • Shvartz E, Saar E, Meyerstein N, Benor D (1973) A comparison of three methods of acclimatization to dry heat. J Appl Physiol 34:214–219

    PubMed  CAS  Google Scholar 

  • Smith B (2003) Rowing New Zealand. In: Bishop B, Hume P (eds) Guidelines for athlete assessment in New Zealand sport. Sport Science New Zealand, Wellington, New Zealand, pp 1–20

    Google Scholar 

  • Steinmacker JM (1993) Physiological aspects of training in rowing. Int J Sport Med 14:S3–S10

    Google Scholar 

  • Tatterson AJ, Hahn AG, Martin DT, Febbraio MA (2000) Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport 3:186–193

    Article  PubMed  CAS  Google Scholar 

  • Taylor NAS (2000) Principles and practices of heat adaptation. J Hum Environ Syst 4:11–22

    Article  Google Scholar 

  • Taylor NAS, Cotter JD (2006) Heat adaptation: guidelines for the optimisation of human performance. Int Sportmed J 7:1–37

    Google Scholar 

  • Taylor NAS, Patterson MJ, Regan JM (1995) Heat acclimation procedures: preparation for humid heat exposure. Applied Physiology research laboratory, University of Wollongong

    Google Scholar 

  • Tucker R, Rauch L, Harley YX, Noakes TD (2004) Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pfluger’s Archiv 448:422–430

    CAS  Google Scholar 

  • Turk J, Worsley DE (1974) A technique for the rapid acclimatisation to heat for the army. Army Personnel Research Establishment. Ministry of Defence, Farnborough, pp 1–15

    Google Scholar 

  • Weller AS, Harrison MH (2001) Influence of heat acclimation on physiological strain during exercise-heat stress in men wearing clothing of limited water vapour permeability. J Physiol 531:51P

    Article  Google Scholar 

  • Willoughby DS, Priest JW, Nelson M (2002) Expression of the stress proteins, Ubiquitin, Heat Shock Protein 72, and Myofibrillar Protein Content After 12 weeks of Leg Cycling in Persons With Spinal Cord Injury. Arch Phys Med Rehabil 83:649–654

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks are given to the participants in this study and the technical expertise provided by Mrs R. McKay and Miss D. Wilson. This work was supported by grants from the Australian Defence Science Technology Organisation and School of Physical Education, University of Otago, New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Garrett.

Additional information

Communicated by Narihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, A.T., Creasy, R., Rehrer, N.J. et al. Effectiveness of short-term heat acclimation for highly trained athletes. Eur J Appl Physiol 112, 1827–1837 (2012). https://doi.org/10.1007/s00421-011-2153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2153-3

Keywords

Navigation