Skip to main content

Advertisement

Log in

Variability in pulmonary function following rapid altitude ascent to the Amundsen–Scott South Pole station

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The impact of acute altitude exposure on pulmonary function is variable. A large inter-individual variability in the changes in forced expiratory flows (FEFs) is reported with acute exposure to altitude, which is suggested to represent an interaction between several factors influencing bronchial tone such as changes in gas density, catecholamine stimulation, and mild interstitial edema. This study examined the association between FEF variability, acute mountain sickness (AMS) and various blood markers affecting bronchial tone (endothelin-1, vascular endothelial growth factor (VEGF), catecholamines, angiotensin II) in 102 individuals rapidly transported to the South Pole (2835 m). The mean FEF between 25 and 75% (FEF25–75) and blood markers were recorded at sea level and after the second night at altitude. AMS was assessed using Lake Louise questionnaires. FEF25–75 increased by an average of 12% with changes ranging from −26 to +59% from sea level to altitude. On the second day, AMS incidence was 36% and was higher in individuals with increases in FEF25–75 (41 vs. 22%, P = 0.05). Ascent to altitude induced an increase in endothelin-1 levels, with greater levels observed in individuals with decreased FEF25–75. Epinephrine levels increased with ascent to altitude and the response was six times larger in individuals with decreased FEF25–75. Greater levels of endothelin-1 in individuals with decreased FEF25–75 suggest a response consistent with pulmonary hypertension and/or mild interstitial edema, while epinephrine may be upregulated in these individuals to clear lung fluid through stimulation of β2-adrenergic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartsch P, Maggiorini M, Schobersberger W et al (1991) Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol 71:136–143

    PubMed  CAS  Google Scholar 

  • Basu CK, Selvamurthy W, Bhaumick G et al (1996) Respiratory changes during initial days of acclimatization to increasing altitudes. Aviat Space Environ Med 67:40–45

    PubMed  CAS  Google Scholar 

  • Berger MM, Dehnert C, Bailey DM et al (2009) Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt Med Biol 10:17–24

    Article  PubMed  CAS  Google Scholar 

  • Berthiaume Y, Staub NC, Matthay MA (1987) Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Investig 79:335–343

    Article  PubMed  CAS  Google Scholar 

  • Bouissou P, Richalet JP, Galen FX et al (1989) Effect of beta-adrenoceptor blockade on renin-aldosterone and alpha-ANF during exercise at altitude. J Appl Physiol 67:141–146

    PubMed  CAS  Google Scholar 

  • Chalmers GW, Little SA, Patel KR et al (1997) Endothelin-1-induced bronchoconstriction in asthma. Am J Respir Crit Care Med 156:382–388

    PubMed  CAS  Google Scholar 

  • Cogo A, Basnyat B, Legnani D et al (1997a) Bronchial asthma and airway hyperresponsiveness at high altitude. Respiration 64:444–449

    Article  PubMed  CAS  Google Scholar 

  • Cogo A, Legnani D, Allegra L (1997b) Respiratory function at different altitudes. Respiration 64:416–421

    Article  PubMed  CAS  Google Scholar 

  • Dehnert C, Luks AM, Schendler G et al (2010) No evidence for interstitial lung oedema by extensive pulmonary function testing at 4, 559 m. Eur Respir J 35:812–820

    Article  PubMed  CAS  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248

    PubMed  CAS  Google Scholar 

  • Effros RM, Parker JC (2009) Pulmonary vascular heterogeneity and the starling hypothesis. Microvasc Res 78:71–77

    Article  PubMed  Google Scholar 

  • Fischer R, Lang SM, Bergner A et al (2005) Monitoring of expiratory flow rates and lung volumes during a high altitude expedition. Eur J Med Res 10:469–474

    PubMed  CAS  Google Scholar 

  • Giacomelli F, Anversa P, Wiener J (1976) Effect of angiotensin-induced hypertension on rat coronary arteries and myocardium. Am J Pathol 84:111–138

    PubMed  CAS  Google Scholar 

  • Goldie RG, Fernandes LB (2000) A possible mediator role for endothelin-1 in respiratory disease. Monaldi Arch Chest Dis 55:162–167

    PubMed  CAS  Google Scholar 

  • Hackett PH, Roach RC (2004) High altitude cerebral edema. High Alt Med Biol 5:136–146

    Article  PubMed  Google Scholar 

  • Hoon RS, Sharma SC, Balasubramanian V et al (1976) Urinary catecholamine excretion on acute induction to high altitude (3,658 m). J Appl Physiol 41:631–633

    PubMed  CAS  Google Scholar 

  • Kaner RJ, Ladetto JV, Singh R et al (2000) Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Respir Cell Mol Biol 22:657–664

    PubMed  CAS  Google Scholar 

  • Loeppky JA, Icenogle MV, Maes D et al (2003) Body temperature, autonomic responses, and acute mountain sickness. High Alt Med Biol 4:367–373

    Article  PubMed  Google Scholar 

  • Mason NP, Barry PW, Pollard AJ et al (2000) Serial changes in spirometry during an ascent to 5,300 m in the Nepalese Himalayas. High Alt Med Biol 1:185–195

    Article  PubMed  CAS  Google Scholar 

  • Mazzeo RS, Wolfel EE, Butterfield GE et al (1994) Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines. Metabolism 43:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Mazzeo RS, Brooks GA, Butterfield GE et al (1995) Acclimatization to high altitude increase muscle sympathetic activity both at rest and during exercise. Am J Physiol 269:R201–R207

    PubMed  CAS  Google Scholar 

  • Milic-Emili J, Kayser B, Gautier H (2001) Mechanics of breathing. In: Horbein TF, Schoene RB (eds) High altitude. Marcel Dekker, New York, p 182

    Google Scholar 

  • Nally JE, McCall R, Young LC et al (1994) Mechanical and biochemical responses to endothelin-1 and endothelin-3 in human bronchi. Eur J Pharmacol 288:53–60

    Article  PubMed  CAS  Google Scholar 

  • Otis AB, Bembower WC (1949) Effect of gas density on resistance to respiratory gas flow in man. J Appl Physiol 2:300–306

    PubMed  CAS  Google Scholar 

  • Pollard AJ, Mason NP, Barry PW et al (1996) Effect of altitude on spirometric parameters and the performance of peak flow meters. Thorax 51:175–178

    Article  PubMed  CAS  Google Scholar 

  • Pollard AJ, Barry PW, Mason NP et al (1997) Hypoxia, hypocapnia and spirometry at altitude. Clin Sci (Lond) 92:593–598

    CAS  Google Scholar 

  • Richalet JP, Larmignat P, Rathat C et al (1988) Decreased cardiac response to isoproterenol infusion in acute and chronic hypoxia. J Appl Physiol 65:1957–1961

    PubMed  CAS  Google Scholar 

  • Rostrup M (1998) Catecholamines, hypoxia and high altitude. Acta Physiol Scand 162:389–399

    Article  PubMed  CAS  Google Scholar 

  • Sartori C, Vollenweider L, Loffler BM et al (1999) Exaggerated endothelin release in high-altitude pulmonary edema. Circulation 99:2665–2668

    PubMed  CAS  Google Scholar 

  • Sartori C, Allemann Y, Duplain H et al (2002) Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med 346:1631–1636

    Article  PubMed  CAS  Google Scholar 

  • Sartori C, Rimoldi SF, Scherrer U (2010) Lung fluid movements in hypoxia. Prog Cardiovasc Dis 52:493–499

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Brown B (2007) Spirometry and respiratory muscle function during ascent to higher altitudes. Lung 185:113–121

    Article  PubMed  Google Scholar 

  • Shirakami G, Nakao K, Saito Y et al (1991) Acute pulmonary alveolar hypoxia increases lung and plasma endothelin-1 levels in conscious rats. Life Sci 48:969–976

    Article  PubMed  CAS  Google Scholar 

  • Singh I, Khanna PK, Srivastava MC et al (1969) Acute mountain sickness. N Engl J Med 280:175–184

    Article  PubMed  CAS  Google Scholar 

  • Snyder EM, Beck KC, Dietz NM et al (2006a) Influence of beta2-adrenergic receptor genotype on airway function during exercise in healthy adults. Chest 129:762–770

    Article  PubMed  CAS  Google Scholar 

  • Snyder EM, Beck KC, Hulsebus ML et al (2006b) Short-term hypoxic exposure at rest and during exercise reduces lung water in healthy humans. J Appl Physiol 101:1623–1632

    Article  PubMed  Google Scholar 

  • Snyder EM, Turner ST, Joyner MJ et al (2006c) The Arg16Gly polymorphism of the beta2-adrenergic receptor and the natriuretic response to rapid saline infusion in humans. J Physiol 574:947–954

    Article  PubMed  CAS  Google Scholar 

  • Snyder EM, Beck KC, Turner ST et al (2007) Genetic variation of the beta2-adrenergic receptor is associated with differences in lung fluid accumulation in humans. J Appl Physiol 102:2172–2178

    Article  PubMed  CAS  Google Scholar 

  • Springall DR, Howarth PH, Counihan H et al (1991) Endothelin immunoreactivity of airway epithelium in asthmatic patients. Lancet 337:697–701

    Article  PubMed  CAS  Google Scholar 

  • Stockley RA, Green ID (1979) Birmingham Medical Research Expeditionary Society 1977 Expedition: cardiopulmonary function before, during and after a twenty-one-day Himalayan trek. Postgrad Med J 55:496–501

    Article  PubMed  CAS  Google Scholar 

  • Sutton JR, Coates G, Housten C (eds) (1992) Lake Louise consensus on the definition and quantification of altitude illness. In: Hypoxia: mountain medicine. Queen City Press, Burlington, pp 327–330

  • Thomas PS, Harding RM, Milledge JS (1990) Peak expiratory flow at altitude. Thorax 45:620–622

    Article  PubMed  CAS  Google Scholar 

  • Trakada G, Marangos M, Spiropoulos K (2001) Mechanisms of endothelin-1 elevation in chronic obstructive pulmonary disease patients with nocturnal oxyhemoglobin desaturation. Respiration 68:134–139

    Article  PubMed  CAS  Google Scholar 

  • Welsh CH, Wagner PD, Reeves JT et al (1993) Operation Everest. II: Spirometric and radiographic changes in acclimatized humans at simulated high altitudes. Am Rev Respir Dis 147:1239–1244

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Science Foundation (B-179-M). We would like to thank the medical staff at McMurdo and Amundsen–Scott South Pole stations for their help as well as the personnel who volunteered for the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lalande.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalande, S., Anderson, P.J., Miller, A.D. et al. Variability in pulmonary function following rapid altitude ascent to the Amundsen–Scott South Pole station. Eur J Appl Physiol 111, 2221–2228 (2011). https://doi.org/10.1007/s00421-011-1864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1864-9

Keywords

Navigation