Skip to main content

Advertisement

Log in

Breathing around the clock: an overview of the circadian pattern of respiration

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This article reviews human and animal studies about the circadian patterns of physiological variables involved with the respiratory function. Some measures reflecting the mechanical properties of the lungs, such as functional residual capacity, forced expiratory volumes and airway resistance, change periodically with the time of the day. Also resting pulmonary ventilation ( E), tidal volume, and breathing rate follow circadian patterns. In humans, these patterns occur independently of the daily changes in activity, whereas, to some extent, they are linked to changes in the state of arousal. Differently, in some rodents, the circadian oscillations of the breathing pattern occur independently of the daily rhythms of either activity or state of arousal. Recent measurements of the breathing pattern for unlimited periods of time in undisturbed animals have indicated that the circadian changes occur in close temporal phase with those of oxygen consumption, carbon dioxide production, and body temperature. However, none of these variables can fully explain the circadian pattern of breathing, the origin of which remains unclear. Both in humans and in rats the E responses to hypercapnia or hypoxia differ at various times of the day. In rats, the daily differences in E responses are buffered by changes in metabolic rate, such that, unlike humans, the hyperventilation (defined as the increase in ventilation–metabolism ratio) remains constant throughout the 24 h. The presence of a biological clock is a major advantage in the adaptation to the environment, although it forces some variables to deviate periodically from their mean value. In humans, these deviations become apparent in conditions of hypoxia. Hence, a daily time-window exists in which the respiratory system is less capable of responding to challenges, a factor which may contribute to the findings that some cardio-respiratory symptoms and diseases peak at particular times of the day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In humans, sleep usually occurs in one time-block of many hours. In many species, however, sleep occurs in bouts alternating with wakefulness throughout the whole 24 h (Meddis 1975)

  2. The exception is at the equator, where L:D is 12:12 in any day of the year

  3. The first recorded observations of an endogenous clock were presented about three centuries ago by the French astronomer Mairan who noticed that the daily L–D-dependent movements of leaflets and the opening and closure of flowers persisted even after the plant was placed in a closet and shielded from the external time cues

  4. From the term circadian, from the Latin circa diem or about 1 day

  5. Usually, arterial and alveolar values of PCO2 are almost identical, and P ACO2 = (CO2/ A)·barometric pressure

  6. The barometric technique basically consists in recording the change in ambient pressure generated by the breathing act of a subject or animal enclosed in a sealed chamber. In fact, during the inspiratory phase of the cycle, the inspired air is warmed and humidified from the ambient to the lung values, raising the chamber pressure. The opposite occurs in expiration. The historical development of this technique, and a review of its potential sources of errors, are presented in Mortola and Frappell (1998)

References

  • Allada R, Emery P, Takahashi JS, Rosbash M (2001) Stopping time: the genetics of fly and mouse circadian clocks. Ann Rev Neurosci 24:1091–1119

    Article  CAS  PubMed  Google Scholar 

  • Anholm JD, Powles ACP, Downey R III, Houston CS, Sutton JR, Bonnet MH, Cymerman A (1992) Operation Everest II: arterial oxygen saturation and sleep at extreme simulated altitude. Am Rev Respir Dis 145:817–826

    CAS  PubMed  Google Scholar 

  • Aschoff J, Pohl H (1970) Rhythmic variations in energy metabolism Fed Proc 29:1541–1552

    CAS  Google Scholar 

  • Ashkenazi IE, Ribak J, Avgar DM, Klepfish A (1982) Altitude and hypoxia as phase shift inducers. Aviat Space Environ Med 53:342–346

    CAS  PubMed  Google Scholar 

  • Ballard RD, Saathoff MC, Patel DK, Kelly PL, Martin RJ (1989) Effect of sleep on nocturnal bronchoconstriction and ventilatory patterns in asthmatics. J Appl Physiol 67:243–249

    CAS  PubMed  Google Scholar 

  • Barnes PJ (1987) Circadian rhythms and airway function. Bull Eur Physiopathol Respir 23:532

    CAS  PubMed  Google Scholar 

  • Bishop B, Silva G, Krasney J, Salloum A, Roberts A, Nakano H, Shucard D, Rifkin D, Farkas G (2000) Circadian rhythms of body temperature and activity levels during 63 h of hypoxia in the rat. Am J Physiol 279: R1378–R1385

    CAS  Google Scholar 

  • Bishop B, Silva G, Krasney J, Nakano H, Roberts A, Farkas G, Rifkin D, Shucard D (2001) Ambient temperature modulates hypoxic-induced changes in rat body temperature and activity differentially. Am J Physiol 280: R1190–R1196

    CAS  Google Scholar 

  • Bonnet R, Jörres R, Heitmann U, Magnussen H (1991) Circadian rhythm in airway responsiveness and airway tone in patients with mild asthma. J Appl Physiol 71:1598–1605

    CAS  PubMed  Google Scholar 

  • Bosco G, Ionadi A, Panico S, Faralli F, Gagliardi R, Data P, Mortola JP (2003) Effects of hypoxia on the circadian patterns in men. High Alt Med Biol 4:305–318

    Google Scholar 

  • Bovbjerg DH (2003) Circadian disruption and cancer: sleep and immune regulation. Brain Behav Immun 17: S48–S50

    Article  PubMed  Google Scholar 

  • Bülow K (1963) Respiration and wakefulness in man. Acta Physiol Scand 59 [Suppl 209]: 1–98

  • Casale R, Natali G, Colantonio D, Pasqualetti P (1992) Circadian rhythm of peak expiratory flow in children passively exposed and not exposed to cigarette smoke. Thorax 47:801–803

    CAS  PubMed  Google Scholar 

  • Cinkotai FF, Thomson ML (1966) Diurnal variation in pulmonary diffusing capacity for carbon monoxide. J Appl Physiol 21:539–542

    CAS  PubMed  Google Scholar 

  • Clark TJH, Hetzel MR (1977) Diurnal variation of asthma. Br J Dis Chest 71:87–92

    CAS  PubMed  Google Scholar 

  • Clayton JD, Kyriacou CP, Reppert SM (2001) Keeping time with the human genome. Nature 409:829–831

    Article  CAS  PubMed  Google Scholar 

  • Cohen RA, Albers HE (1991) Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology 41:726–729

    CAS  PubMed  Google Scholar 

  • Czeisler CA, Weitzman ED, Moore-Ede MC, Zimmerman JC, Knauer RS (1980) Human sleep: its duration and organization depend on its circadian phase. Science 210:1264–1267

    CAS  PubMed  Google Scholar 

  • D’Alonzo GE, Steinijans VW, Keller A (1995) Measurements of morning and evening airflow grossly underestimate the circadian variability of FEV1 and peak expiratory flow rate in asthma. Am J Resp Crit Care Med 152:1097–1099

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Forster HV, Ainsworth DM (1995) Regulation of hyperpnea, hyperventilation, and respiratory muscle recruitment during exercise. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 1065–1134

  • Dreher D, Koller EA (1990) Circadian rhythms of specific airway conductance and bronchial reactivity to histamine: the effects of parasympathetic blockade. Eur Respir J 3:414–420

    CAS  PubMed  Google Scholar 

  • Drorbaugh JE, Fenn WO (1955) A barometric method for measuring ventilation in newborn infants. Pediatrics 16:81–87

    PubMed  Google Scholar 

  • Dupre RK, Romero AM, Wood SC (1988) Thermoregulation and metabolism in hypoxic animals. In: Gonzales NC, Fedde MR (eds) Oxygen transfer from atmosphere to tissues. Plenum, New York, pp 347–351

  • Fenelon K, Seifert EL, Mortola JP (2000) Hypoxic depression of circadian oscillations in sino-aortic denervated rats. Respir Physiol 122:61–69

    Article  CAS  PubMed  Google Scholar 

  • Fleetham J, West P, Mezon B, Conway W, Roth T, Kryger M (1982) Sleep, arousal, and oxygen desaturation in chronic obstructive pulmonary disease. The effect of oxygen therapy. Am Rev Respir Dis 126:429–433

    CAS  PubMed  Google Scholar 

  • Gaultier C, Reinberg A, Girard F (1977) Circadian rhythms in lung resistance and dynamic lung compliance of healthy children. Effects of two bronchodilators. Respir Physiol 31:169–182

    Article  CAS  PubMed  Google Scholar 

  • Gaultier C, Reinberg A, Motohashi Y (1988) Circadian rhythm in total pulmonary resistance of asthmatic children. Effects of a beta-agonist agent. Chronobiol Int 5:285–290

    CAS  PubMed  Google Scholar 

  • Gautier H (1996) Interactions among metabolic rate, hypoxia, and control of breathing. J Appl Physiol 81:521–527

    CAS  PubMed  Google Scholar 

  • Guagnano MT, Angelucci E, Data PG, Marroni A, Menduni P, Salomone N, Vetrini G, Sensi S (1986). Influenza dell’alta quota simulata in camera iperbarica sulla struttura temporale circadiana. Boll Soc It Biol Sper 62:427–434

    CAS  Google Scholar 

  • Hayashi S, Toyoshima H, Miyanishi K, Tanabe N (1992) Circadian variations of sudden death. Jpn J Public Health 39:83–89

    CAS  Google Scholar 

  • Henderson AJW, Carswell F (1989) Circadian rhythm of peak expiratory flow in asthmatic and normal children. Thorax 44:410–414

    CAS  PubMed  Google Scholar 

  • Hendricks JC (2003) Invited review: Sleeping flies don’t lie: the use of Drosophila melanogaster to study sleep and circadian rhythms. J Appl Physiol 94:1660–1672

    PubMed  Google Scholar 

  • Hetzel MR (1981) The pulmonary clock (editorial). Thorax 36:481–486

    CAS  PubMed  Google Scholar 

  • Hetzel MR, Clark TJH (1979) Does sleep cause nocturnal asthma? Thorax 34:749–754

    CAS  PubMed  Google Scholar 

  • Hetzel MR, Clark TJH (1980) Comparison of normal and asthmatic circadian rhythms in peak expiratory flow rates. Thorax 35:732–738

    CAS  PubMed  Google Scholar 

  • Hicks JW, Riedesel ML (1983) Diurnal ventilatory patterns in the Garter Snake, Thamnophis elegans. J Comp Physiol 149:503–510

    Google Scholar 

  • Hsu JY, Stone RA, Logan-Sinclair RB, Worsdell M, Busst CM, Chung KF (1994). Coughing frequency in patients with persistent cough: assessment using a 24 hour ambulatory recorder. Eur Respir J 7:1246–1253

    CAS  PubMed  Google Scholar 

  • Jackson FR, Schroeder AJ, Roberts MA, McNeil GP, Kume K, Akten B (2001) Cellular and molecular mechanisms of circadian control in insects. J Insect Physiol 47:833–842

    Google Scholar 

  • Jarsky TM, Stephenson R (2000) Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus). J Appl Physiol 89:2130–2138

    CAS  PubMed  Google Scholar 

  • Kadle R, Folk GE Jr (1983) Importance of circadian rhythms in animal cell cultures. Comp Biochem Physiol A 76: 773–776

    Article  CAS  PubMed  Google Scholar 

  • Kelmanson IA (1991) Circadian variation of the frequency of sudden infant death syndrome and of sudden death from life-threatening conditions in infants. Chronobiologia 18:181–186

    CAS  PubMed  Google Scholar 

  • Kerr HD (1973) Diurnal variation of respiratory function independent of air quality. Experience with an environmentally controlled exposure chamber for human subjects. Arch Environ Health 26:144–152

    CAS  PubMed  Google Scholar 

  • Lundblad LKA, Irvin CG, Adler A, Bates JHT (2002) A reevaluation of the validity of unrestrained plethysmography in mice. J Appl Physiol 93:1198–1207

    PubMed  Google Scholar 

  • Marshall J (1977) Diurnal variation in occurrence of strokes. Stroke 8:230–231

    CAS  PubMed  Google Scholar 

  • Martin RJ (1993) Nocturnal asthma: circadian rhythms and therapeutic interventions. Am Rev Respir Dis 147: S25–S28

    CAS  PubMed  Google Scholar 

  • Martin RJ, Banks-Schlegel S (1998) Chronobiology of asthma. Am J Respir Crit Care Med 158:1002–1007

    CAS  PubMed  Google Scholar 

  • Meddis T (1975) On the function of sleep. Anim Behav 23:676–691

    CAS  PubMed  Google Scholar 

  • Mills JN (1953) Changes in alveolar carbon dioxide tension by night and during sleep. J Physiol (Lond) 122:66–80

    Google Scholar 

  • Mills JN, Minors DS, Waterhouse JM (1978) Adaptation to abrupt time shifts on the oscillator(s) controlling human circadian rhythms. J Physiol (Lond) 285:455–470

    Google Scholar 

  • Mitzner W, Tankersley C (2003) Interpreting Penh in mice. J Appl Physiol 94:828–831

    PubMed  Google Scholar 

  • Moore-Ede MC, Czeisler CA, Richardson GS (1983) Circadian timekeeping in health and disease. Part 2. Clinical implications of circadian rhythmicity. New Engl J Med 309:530–536

    CAS  PubMed  Google Scholar 

  • Mortola JP (1996) Ventilatory responses to hypoxia in mammals. In: Haddad GG, Lister G (eds) Tissue oxygen deprivation. From molecular to integrated function. Marcel Dekker, New York, pp 433–477

  • Mortola JP, Gautier H (1995) Interaction between metabolism and ventilation: Effects of respiratory gases and temperature. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 1011–1064

  • Mortola JP, Feher C (1998) Hypoxia inhibits cold-induced huddling in rat pups. Respir Physiol 113:213–222

    Article  CAS  PubMed  Google Scholar 

  • Mortola JP, Frappell PB (1998) On the barometric method for measurements of ventilation, and its use in small animals. Can J Physiol Pharmacol 76:937–944

    Article  CAS  PubMed  Google Scholar 

  • Mortola JP, Seifert EL (2000) Hypoxic depression of circadian rhythms in adult rats. J Appl Physiol 88:365–368

    CAS  PubMed  Google Scholar 

  • Mulcahy D, Purcell H, Fox K (1991) Should we get up in the morning? Observations on circadian variations in cardiac events. Br Heart J 65:299–301

    CAS  PubMed  Google Scholar 

  • Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T, Sobel BE, Willerson JT, Braunwald E, MILIS Study Group (1985) Circadian variation in the frequency of onset of myocardial infarction. N Engl J Med 313:1315–1322

    Google Scholar 

  • Oosterhoff Y, Koëter GH, De Monchy JGR, Postma DS (1993) Circadian variation in airway responsiveness to methacoline, propranolol, and AMP in atopic asthmatic subjects. Am Rev Respir Dis 147:512–517

    CAS  PubMed  Google Scholar 

  • Pack AI (1995). Changes in respiratory motor activity during rapid eye movement sleep. In: Dempsey JA, Pack AI (eds) Regulation of breathing, 2nd edn. Marcel Dekker, New York, pp 983–1010

  • Panda A, McHardy GJR (1980) Diurnal variation in pulmonary diffusing capacity and expiratory volumes. Indian J Physiol Pharmacol 24:112–118

    CAS  PubMed  Google Scholar 

  • Pappenheimer JR (1977) Sleep and respiration of rats during hypoxia. J Physiol (Lond) 266:191–207

    Google Scholar 

  • Peever JH, Stephenson R (1997) Day–night differences in the respiratory response to hypercapnia in awake adult rats. Respir Physiol 109:241–248

    CAS  PubMed  Google Scholar 

  • Petty TL (1988) Circadian variations in chronic asthma and chronic obstructive pulmonary disease. Am J Med 85:21–23

    CAS  Google Scholar 

  • Phillipson EA, Bowes G (1986) Control of breathing during sleep. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The respiratory system, vol. II, Control of breathing, part 2. American Physiological Society, Bethesda, Md., pp 649–689

  • Poncet L, Pequignot JM, Cottet-Emard JM, Dalmaz Y, Denoroy L (1999) Altered daily rhythms of brain and pituitary indolamines and neuropeptides in long-term hypoxic rats. Am J Physiol 277: R66–R75

    CAS  PubMed  Google Scholar 

  • Ralph MR, Foster RG, Davis, FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    CAS  PubMed  Google Scholar 

  • Raschke F, Möller KH, (1989) Untersuchungen zur Tagesrhythmik der Chemosensitivität und daren Beitrag zu nächtlichen Atmungsregulationsstörungen. Pneumologia 43:568–571

    Google Scholar 

  • Reinberg A, Gervais P (1972) Circadian rhythms in respiratory functions, with special reference to human chronophysiology and chronopharmacology. Bull Physiopathol Respir (Nancy) 8:663–675

    Google Scholar 

  • Refinetti R (2000) Circadian physiology. CRC, Boca Raton, Fla.

  • Refinetti R, Menaker M (1992) The circadian rhythm of body temperature. Physiol Behav 51:613–637

    CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Richalet JP, Rutgers V, Bouchet P, Rymer JC, Kéromès A, Duval-Arnould G, Rathat C (1989) Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med 60:105–111

    CAS  PubMed  Google Scholar 

  • Saiki C, Mortola JP (1995) Hypoxia abolishes the morning-night differences of metabolism and ventilation in 6-day-old rats. Can J Physiol Pharmacol 73:159–164

    CAS  PubMed  Google Scholar 

  • Samel A, Vejvoda M, Wittiber K, Wenzel J (1998) Circadian rhythms and activity-rest cycle under different CO2 concentrations. Aviat Space Environ Med 69:501–505

    CAS  PubMed  Google Scholar 

  • Schwartz WJ, Busis NA, Hedley-Whyte ET (1986) A discrete lesion of ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4

    CAS  PubMed  Google Scholar 

  • Seifert EL, Mortola JP (2002a) The circadian pattern of breathing in conscious adult rats. Respir Physiol 129:297–305

    Article  PubMed  Google Scholar 

  • Seifert EL, Mortola JP (2002b) Circadian pattern of ventilation during acute and chronic hypercapnia in conscious adult rats. Am J Physiol 282:R244–R251

    CAS  Google Scholar 

  • Seifert EL, Mortola JP (2002c) Circadian pattern of ventilation during prolonged hypoxia in conscious rats. Respir Physiol Neurobiol 133:23–34

    Article  PubMed  Google Scholar 

  • Seifert EL, Knowles J, Mortola JP (2000) Continuous circadian measurements of ventilation in behaving adult rats. Respir Physiol 120:179–183

    CAS  PubMed  Google Scholar 

  • Shibata H, Horie O, Sugita M (1990) Studies on the deviation of short term FRC measurements with the closed-circuit method and on diurnal variation of FRC. Jpn J Clin Pathol 38:463–467

    CAS  Google Scholar 

  • Sommmer B, Montaño LM, Chávez J, Gustin P, Vargas MH (1998) Guinea pig lung resistance shows circadian rhythmicity not influenced by ozone. Respir Physiol 113:223–229

    Article  PubMed  Google Scholar 

  • Spengler CM, Shea SA (2000) Endogenous circadian rhythm of pulmonary function in healthy humans. Am J Respir Crit Care Med 162:1038–1046

    CAS  PubMed  Google Scholar 

  • Spengler CM, Czeisler CA, Shea SA (2000) An endogenous circadian rhythm of respiratory control in humans. J Physiol (Lond) 526:683–694

    Google Scholar 

  • Stadler P, Deegen E (1986) Diurnal variation of dynamic compliance, resistance and viscous work of breathing in normal horses and horses with lung disorders. Equine Vet J 18:171–178

    CAS  PubMed  Google Scholar 

  • Štefiková H, Šovciková E, Broniš M (1986) The circadian rhythm of selected parameters of heart rate variability. Physiol Bohemoslov 35:227–232

    PubMed  Google Scholar 

  • Stephenson R, Mohan MR, Duffin J, Jarsky TM (2000) Circadian rhythms in the chemoreflex control of breathing. Am J Physiol 278: R282–R286

    CAS  Google Scholar 

  • Stephenson R, Liao KS, Hamrahi H, Horner RL (2001) Circadian rhythms and sleep have additive effects on respiration in the rat J Physiol (Lond) 536:225–235

    Google Scholar 

  • Stupfel M, Pletan Y (1983) Respiratory ultradian rhythms of mean and low frequencies: a comparative physiological approach. Chronobiologia 10:283–292

    CAS  PubMed  Google Scholar 

  • Troyanov S, Ghezzo H, Cartier A, Malo JL (1994) Comparison of circadian variations using FEV1 and peak expiratory flow rates among normal and asthmatic subjects. Thorax 49:775–780

    CAS  PubMed  Google Scholar 

  • Turner-Warwick M (1988) Epidemiology of nocturnal asthma. Am J Med 85:6–8

    CAS  Google Scholar 

  • Vargas M, Jiménez D, León-Velarde F, Osorio J, Mortola JP (2001) Circadian patterns in men acclimatized to intermittent hypoxia. Respir Physiol 126:233–243

    Article  CAS  PubMed  Google Scholar 

  • Vogelbaum MA, Menaker M (1992) Temporal chimeras produced by hypothalamic transplants. J Neurosci 12:3619–3627

    CAS  PubMed  Google Scholar 

  • Weil JV (1986) Ventilatory control at high altitude. In: Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The respiratory system, vol. II, Control of breathing, part 2. American Physiological Society, Bethesda, Md., pp 703–727

  • Woodin M, Stephenson R (1998) Circadian rhythms in diving behavior and ventilatory response to asphyxia in canvasback ducks Am J Physiol 274: R686–R693

    CAS  Google Scholar 

  • Zulley J, Wever R, Aschoff J (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch 391:314–318

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo P. Mortola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortola, J.P. Breathing around the clock: an overview of the circadian pattern of respiration. Eur J Appl Physiol 91, 119–129 (2004). https://doi.org/10.1007/s00421-003-0978-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0978-0

Keywords

Navigation