Skip to main content
Log in

Evaluation of occupational exposure: comparison of biological and environmental variabilities using physiologically based toxicokinetic modeling

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

Few studies compare the variabilities that characterize environmental (EM) and biological monitoring (BM) data. Indeed, comparing their respective variabilities can help to identify the best strategy for evaluating occupational exposure. The objective of this study is to quantify the biological variability associated with 18 bio-indicators currently used in work environments.

Method

Intra-individual (BVintra), inter-individual (BVinter), and total biological variability (BVtotal) were quantified using validated physiologically based toxicokinetic (PBTK) models coupled with Monte Carlo simulations. Two environmental exposure profiles with different levels of variability were considered (GSD of 1.5 and 2.0).

Results

PBTK models coupled with Monte Carlo simulations were successfully used to predict the biological variability of biological exposure indicators. The predicted values follow a lognormal distribution, characterized by GSD ranging from 1.1 to 2.3. Our results show that there is a link between biological variability and the half-life of bio-indicators, since BVintra and BVtotal both decrease as the biological indicator half-lives increase. BVintra is always lower than the variability in the air concentrations. On an individual basis, this means that the variability associated with the measurement of biological indicators is always lower than the variability characterizing airborne levels of contaminants. For a group of workers, BM is less variable than EM for bio-indicators with half-lives longer than 10–15 h.

Conclusion

The variability data obtained in the present study can be useful in the development of BM strategies for exposure assessment and can be used to calculate the number of samples required for guiding industrial hygienists or medical doctors in decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ACGIH®. American Conference of Governmental an Industrial Hygienists (1996) Threshold limit values and biological exposure indices, Cincinnati, Ohio

  • ACGIH®. American Conference of Governmental an Industrial Hygienists (2003) Threshold limit values and biological exposure indices, Cincinnati, Ohio

  • ACGIH®. American Conference of Governmental an Industrial Hygienists (2004) Threshold limit values and biological exposure indices, Cincinnati, Ohio

  • ACGIH®. American Conference of Governmental an Industrial Hygienists (2005) Threshold limit values and biological exposure indices, Cincinnati, Ohio

  • ACGIH®. American Conference of Governmental an Industrial Hygienists (2006) Threshold limit values and biological exposure indices, Cincinnati, Ohio

  • ACGIH®. American Conference of Governmental an Industrial Hygienists (2007) Threshold limit values and biological exposure indices, Cincinnati, Ohio

  • ACGIH®. American Conference of Governmental an Industrial Hygienists (2010) Threshold limit values and biological exposure indices, Cincinnati, Ohio

  • Berthet A, de Batz A, Tardif R, Charest-Tardif G, Truchon G, Vernez D, Droz PO (2010) Impact of biological and environmental variabilities on biological monitoring—an approach using toxicokinetic models. J Occup Environ Hyg 7:177–184

    Article  CAS  Google Scholar 

  • Bowman JD, Held JL, Factor DR (1990) A field evaluation of mandelic acid in urine as a compliance monitor for styrene exposure. Appl Ind Hyg 5:526–535

    CAS  Google Scholar 

  • Consolazio CF, Johnson RE, Pecosa LJ (1969) Physiological measurements of metabolic functions in man. McGraw-Hill, New York

    Google Scholar 

  • Droz PO (1989) Biological monitoring I: sources of variability in human response to chemical exposure. Appl Ind Hyg 4(1):F20–F24

    Article  Google Scholar 

  • Droz PO (1992) Quantification of biological variability. Ann Occup Hyg 36(3):295–306

    Article  CAS  Google Scholar 

  • Droz PO, Wu MM (1990) Biological monitoring strategies. In: Rappaport SM, Smith TJ (eds) Exposure assessment for epidemiology and hazard control. Lewis Publishers, Chelsea, pp 251–270

    Google Scholar 

  • Droz PO, Wu NM, Cumberland WG, Berode M (1989a) Variability in biological monitoring of solvent exposure. I Development of a population physiological model. Br J Ind Med 46:447–460

    CAS  Google Scholar 

  • Droz PO, Wu NM, Cumberland WG (1989b) Variability in biological monitoring of solvent exposure. II Application of a population physiological model. Br J Ind Med 46:547–558

    CAS  Google Scholar 

  • Droz PO, Berode M, Wu MM (1991) Evaluation of concomitant biological and air monitoring results. Appl Occup Environ Hyg 6(6):465–474

    Article  CAS  Google Scholar 

  • Fustinoni S, Manini P, Campo L, De Palma G, Andreoli R, Mutti A, Bertazzi PA, Rappaport SM (2010) Assessing variability and comparing short-term biomarkers of styrene exposure using repeated measurements approach. Toxicol Lett 192:40–44

    Article  CAS  Google Scholar 

  • Gouvernement du Québec (2001) Regulation respecting occupational health and safety. Éditeur officiel du Québec

  • Hattis D, Silver K (1994) Human interindividual variability—a major source of uncertainty in assessing risks for noncancer health effects. Risk Anal 14(4):421–431

    Article  CAS  Google Scholar 

  • Lauwerys RR, Hoet P (2001) Industrial chemical exposure, 3rd edn. Lewis, London

  • Leidel NA, Busch KA (2001) Statistical design and data analysis. Patty’s industrial hygiene, 6th edn. John Wiley & Sons, New York

  • Liljelind I, Rappaport S, Eriksson K, Andersson J, Bergdahl IA, Sunesson A-L (2003) Exposure assessment of monoterpenes and styrene: a comparison of air sampling and biomonitoring. Occup Environ Med 60:599–603

    Article  CAS  Google Scholar 

  • Lin YS, Kupper LL, Rappaport SM (2005) Air sample versus biomarkers for epidemiology. Occup Environ Med 62:750–760

    Article  CAS  Google Scholar 

  • Löf A, Johanson G (1998) Toxicokinetics of organic solvents: a review of modifying factors. Crit Rev Toxicol 28(6):571–650

    Article  Google Scholar 

  • Manno M, Viau C, Cocker J, Colosio C, Lowry L, Mutti A, Nordberg M, Wang S (2010) Biomonitoring for occupational health risk assessment (BOHRA). Toxicol Lett 192:3–16

    Article  CAS  Google Scholar 

  • Mulhausen JR, Damiano J (1998) A strategy for assessing and managing occupational exposures. American industrial hygiene association, Fairfax

    Google Scholar 

  • NAS. National Academy of Science (2006) Human biomonitoring for environmental chemicals. The National Academy Press, Washington DC

    Google Scholar 

  • Portier CJ, Kaplan NL (1989) Variability of safe dose estimates when using complicated models of the carcinogenic process: a case study: methylene chloride. Fundam Appl Toxicol 13:533–544

    Article  CAS  Google Scholar 

  • Ramsey JC, Andersen ME (1984) A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol 73(1):159–175

    Article  CAS  Google Scholar 

  • Rappaport SM (1990) Exposure assessment strategies. In: Rappaport SM, Smith TJ (eds) Exposure assessment for epidemiology and hazard control. Lewis Publishers, Chelsea, pp 219–249

    Google Scholar 

  • Rappaport SM, Symanski E, Yager JW, Kupper LL (1995) The relationship between environmental monitoring and biological markers in exposure assessment. Environ Health Perspect 103:49–54

    Google Scholar 

  • Schwartz JB (2003) The influence of sex on pharmacokinetic. Clin Pharmacokinet 42(2):107–121

    Article  CAS  Google Scholar 

  • Sobus JR, Pleil JD, McClean MD, Herrick RF, Rappaport SM (2010) Biomarker variance component estimation for exposure surrogate selection and toxicokinetic inference. Toxicol Lett 199:247–253

    Article  CAS  Google Scholar 

  • Spaan S, Fransman W, Warren N, Cotton R, Cocker J, Tielemans E (2010) Variability of biomarkers in volunteer studies: the biological component. Toxicol Lett 198:144–151

    Article  CAS  Google Scholar 

  • Symanski E, Greeson NMH (2002) Assessment of variability in biomonitoring data using a large database of biological measures of exposure. Am Ind Hyg Assoc J 63:390–401

    Article  CAS  Google Scholar 

  • Symanski E, Sällsten G, Barregard L (2000) Variability in airborne and biological measures of exposure to mercury in the chloralkali industry: implications for epidemiologic studies. Environ Health Perspect 108:569–573

    Article  CAS  Google Scholar 

  • Symanski E, Greeson MH, Chan W (2007) Evaluating measurement error in estimates of worker exposure assessed in parallel by personal and biological monitoring. Am J Ind Med 50:112–121

    Article  CAS  Google Scholar 

  • Tardif R, Charest-Tardif G, Brodeur J, Krishnan K (1997) Physiologically based pharmacokinetic modelling of a ternary mixture of alkyl benzenes in rats and humans. Toxicol Appl Pharmacol 144:120–134

    Article  CAS  Google Scholar 

  • Tardif R, Droz PO, Charest-Tardif G, Pierrehumbert G, Truchon G (2002) Impact of human variability on the biological monitoring of exposure to toluene: I. Physiologically based toxicokinetic modelling. Toxicol Lett 134:155–163

    Article  CAS  Google Scholar 

  • Thomas RS, Lytle WA, Keefe TJ, Constan AA, Yang RS (1996a) Incorporating Monte Carlo simulation into physiologically based pharmacokinetic models using advanced continuous simulation language (ACSL): a computational method. Fundam Appl Toxicol 3(1):19–28

    Article  Google Scholar 

  • Thomas RS, Bigelow PL, Keefe TJ, Yang RH (1996b) Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am Ind Hyg Assoc J 57:23–32

    Article  CAS  Google Scholar 

  • Truchon G (2004) Biological monitoring guide—sampling and results interpretation (in French), 6th edn. IRSST http://www.irsst.qc.ca/media/documents/PubIRSST/T-03.pdf. Accessed 25 Nov 2011

  • Truchon G, Tardif R, Brodeur J (1999) o-Cresol: a good indicator of exposure to low levels of toluene. Appl Occup Environ Hyg 14(10):677–681

    Article  CAS  Google Scholar 

  • Truchon G, Tardif R, Droz PO, Charest-Tardif G, Pierrehumbert G, Drolet D (2003) Quantification of biological variability using toxicokinetic modeling—development of a strategies guide for occupational biological monitoring (in French). Études et recherches/Rapport R-337. IRSST http://www.irsst.qc.ca/files/documents/PubIRSST/RA-337.pdf. Accessed 25 Nov 2011

  • Truchon G, Tardif R, Droz P-O, Charest-Tardif G, Pierrehumbert G (2006) Biological exposure indicators: quantification of biological variability using toxicokinetic modeling. J Occup Environ Hyg 3:137–143

    Article  CAS  Google Scholar 

  • Truchon G, Brochu M, Tardif R (2009) Effect of physical exertion on the biological monitoring of exposure to various solvents following exposure by inhalation in human volunteers: III. Styrene. J Occup Environ Hyg 6(8):460–467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Martine Lévesque for her professional assistance. This work was supported by the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Truchon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truchon, G., Tardif, R., Charest-Tardif, G. et al. Evaluation of occupational exposure: comparison of biological and environmental variabilities using physiologically based toxicokinetic modeling. Int Arch Occup Environ Health 86, 157–165 (2013). https://doi.org/10.1007/s00420-012-0753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-012-0753-9

Keywords

Navigation