Skip to main content

Advertisement

Log in

Influence of positive gradient metallic cellular core on energy dissipation of sandwich panels under indentation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The positive gradient (PG) metallic cellular core and its initial plateau stress linearly increase from the upper face of the metallic cellular material to its bottom face. In the current study, the discussions are carried out into the influence of PG metallic cellular core on the energy dissipation of sandwich panels under indentation. An analytical model to investigate the plastic indentation response for the sandwich panel with PG metallic cellular core is developed. Finite element simulation is carried out in order to verify the analytical results. Then, the effect of the PG metallic cellular core on the energy dissipation of sandwich panels is further investigated by considering three gradient cases. And the results show that the energy dissipation of PG metallic cellular core is lower than that of the homogeneous core with equivalent mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ali, M., Qamhiyah, A., Flugrad, D., Shakoor, M.: Theoretical and finite element study of a compact energy absorber. Adv. Eng. Softw. 39, 95–106 (2008)

    Article  Google Scholar 

  2. Ruan, D., Lu, G., Wang, B., Yu, T.X.: In-plane dynamic crushing of honeycombs—a finite element study. Int. J. Impact Eng. 28, 161–182 (2003)

    Article  Google Scholar 

  3. Ajdari, A., Canavan, P., Nayeb-Hashemi, H., Warner, G.: Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation. Mater. Sci. Eng. A 499, 434–439 (2009)

    Article  Google Scholar 

  4. Hangai, Y., Saitoa, K., Utsunomiy, T.: Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys. Mater. Sci. Eng. A 613, 163–170 (2014)

    Article  Google Scholar 

  5. He, S.Y., Zhang, Y., Dai, G., Jiang, J.Q.: Preparation of density-graded aluminum foam. Mater. Sci. Eng. A 618, 496–499 (2014)

    Article  Google Scholar 

  6. Xiao, D.B., Mu, L., Zhao, G.P.: Indentation response of sandwich panels with positive gradient metallic cellular core. J. Sandw. Struct. Mater. 17(6), 597–612 (2015)

    Article  Google Scholar 

  7. Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  8. Thomsen, O.T.: Theoretical and experimental investigations of local bending effects in sandwich plates. Compos. Struct. 30, 85–101 (1995)

    Article  Google Scholar 

  9. Koissin, V., Skvortsov, V., Krahmalev, S., Shilpsha, A.: The elastic response of sandwich structures to local loading. Compos. Struct. 63, 375–385 (2004)

    Article  Google Scholar 

  10. Turk, M.H., Fatt, M.S.H.: Localized damage response of composite sandwich plates. Compos. Part B Eng. 30, 157–165 (1999)

    Article  Google Scholar 

  11. Rizov, V., Shipsha, A., Zenkert, D.: Indentation study of foam core sandwich composite panels. Compos. Struct. 69(1), 95–102 (2005)

    Article  Google Scholar 

  12. Navarro, P., Abrate, S., Aubry, J., Marguet, S., Ferrero, J.F.: Analytical modeling of indentation of composite sandwich beam. Compos. Struct. 100, 79–88 (2013)

    Article  Google Scholar 

  13. Rizov, V.: Failure behavior of composite sandwich structures under local loading. Arch. Appl. Mech. 79, 205–212 (2009)

    Article  MATH  Google Scholar 

  14. Xu, A., Vodenitcharova, T., Kabir, K., Flores-Johnson, E.A., Hoffman, M.: Finite element analysis of indentation of aluminium foam and sandwich panels with aluminium foam core. Mater. Sci. Eng. A 599, 125–133 (2014)

    Article  Google Scholar 

  15. Qin, Q., Zhang, J., Wang, Z., Li, H., Guo, D.: Indentation of sandwich beams with metal foam core. Trans. Nonferrous Metal Soc. 24, 2440–2446 (2014)

    Article  Google Scholar 

  16. Xie, Z.Y., Zheng, Z.J., Yu, J.L.: Localized indentation of sandwich beam with metallic foam core. J. Sandw. Struct. Mater. 14, 197–210 (2012)

    Article  Google Scholar 

  17. Xie, Z.Y., Zheng, Z.J., Yu, J.L.: Localized indentation of sandwich panels with metallic foam core: analytical models for two types of indenters. Compos. Part B Eng. 44, 212–217 (2013)

    Article  Google Scholar 

  18. Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)

    Article  Google Scholar 

  19. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  20. Soden, P.D.: Indentation of composite sandwich beams. J. Strain Anal. Eng. 31, 353–360 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11372237) and the National Basic Research Program of China (2011CB610305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiping Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Mu, L. & Zhao, G. Influence of positive gradient metallic cellular core on energy dissipation of sandwich panels under indentation. Arch Appl Mech 86, 1901–1911 (2016). https://doi.org/10.1007/s00419-016-1154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1154-4

Keywords

Navigation