Skip to main content
Log in

Fundamental solutions of a crack impinging upon an interface slippage in laminated anisotropic bodies

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Intra-ply or inter-ply slippages are commonly seen at the crack tip impinging upon an interface in laminated anisotropic bodies. An interface slippage could occur in the form of yielding (e.g., a well-bonded ductile layer with plastic yielding) or debonding (e.g., a weak, sliding-free one) along the interface direction. This paper presents a fundamental solution for a crack in one individual brittle part impinging normally upon the interface slippage with the neighboring brittle part of laminated anisotropic materials under tensile loading. A superposition method is employed to explicitly solve the problem which combines the solution of a crack in a perfectly bonded elastic homogeneous medium, the solution of a continuous distribution of dislocations which represent slippage at the interface and an appendix solution which offsets the stress on the crack faces induced by the dislocations. This procedure reduces the problem to a singular integral equation which can be numerically solved by using Chebyshev polynomials. The validity of the present solutions is numerically verified where the traction-free condition on the crack faces and the equilibrium of shear stress along the interface slippage can be really satisfied. Numerical implementations are performed to analyze the influence of interface slippage on cracking and stress redistribution in laminated anisotropic bodies. It is found that interface yielding or interface debonding redistributes the stress ahead of the crack tip in the neighboring uncracked part. The presence of interface yielding or debonding lowers the high stress concentration in the tensile stresses ahead of the crack tip. It is also concluded that interface debonding appears to be more effective in lowering the stress concentration than interface plastic yielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He, M.Y., Heredia, F.E., Wissuchek, D.J., Shaw, M.C., Evans, A.G.: The mechanics of crack growth in layered materials. Acta Metall. Mater. 41(4), 1223–1228 (1993)

    Article  Google Scholar 

  2. Dalgleish, B.J., Trumble, K.P., Evans, A.G.: The strength and fracture of alumina bonded with aluminum alloys. Acta Metall. Mater. 37(7), 1923–1931 (1989)

    Article  Google Scholar 

  3. Chartier, T., Merle, D., Besson, J.L.: Laminar ceramic composites. J. Eur. Ceram. Soc. 15(2), 101–107 (1995)

    Article  Google Scholar 

  4. Gotsis, P.K., Chamis, C.C., Minnetyan, L.: Application of progressive fracture analysis for predicting failure envelopes and stress–strain behaviors of composite laminates: a comparison with experimental results. Compos. Sci. Technol. 62(12–13), 1545–1559 (2002)

    Article  Google Scholar 

  5. Folsom, C.A., Zok, F.W., Lange, F.F., Marshall, D.B.: Mechanical behavior of a laminar ceramic/fiber-reinforced epoxy composite. J. Am. Ceram. Soc. 75(11), 2969–2975 (1992)

    Article  Google Scholar 

  6. Hutchinson, J.W., Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1991)

    Article  MATH  Google Scholar 

  7. Beuth Jr, J.L.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29(13), 1657–1675 (1992)

    Article  Google Scholar 

  8. Dauskardt, R.H., Lane, M., Ma, Q., Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61(1), 141–162 (1998)

    Article  Google Scholar 

  9. Aveston, J., Cooper, G.A., Kelly, A.: Single and multiple fracture, the properties of fiber composites[C]. In: Conference proceedings on properties of fiber composites, pp. 15–26. National Physical Laboratory. IPC Science and Technology Press Ltd, Guildford, UK (1971)

  10. Budiansky, B., Hutchinson, J.W.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids 34(2), 167–189 (1986)

    Article  MATH  Google Scholar 

  11. Chiang, Y.C.: The influence of Poisson contraction on matrix cracking stress in fiber reinforced ceramics. J. Mater. Sci. 36(13), 3239–3246 (2001)

    Article  Google Scholar 

  12. Solti, J.P., Mall, S., Robertson, D.D.: Modeling damage in unidirectional ceramic-matrix composites. Compos. Sci. Technol. 54(1), 55–66 (1995)

    Article  Google Scholar 

  13. Sih, G.C., Paris, P.C., Irwin, G.R.: On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech. 1(3), 189–203 (1965)

    Google Scholar 

  14. Lekhnitskii, S.G., Tsai, S.W., Cheron, T.: Anisotropic Plates. Gordon and Breach Science Publishers, London (1968)

    Google Scholar 

  15. Kortschot, M.T., Beaumont, P.W.R.: Damage mechanics of composite materials: I—measurements of damage and strength. Compos. Sci. Technol. 39(4), 289–301 (1990)

    Article  Google Scholar 

  16. Chan, K.S., He, M.Y., Hutchinson, J.W.: Cracking and stress redistribution in ceramic layered composites. Mater. Sci. Eng. 167(1–2), 57–64 (1993)

    Article  Google Scholar 

  17. Dollar, A., Steif, P.S.: A tension crack impinging upon frictional interfaces. J. Appl. Mech. 56(2), 291–298 (1989)

    Article  MATH  Google Scholar 

  18. Lo, K.K.: Analysis of branched cracks. J. Appl. Mech. 45(4), 797 (1978)

    Article  MATH  Google Scholar 

  19. Muskhelishvili, N.L.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff International Publishing, Leiden (1958)

    Google Scholar 

  20. England, A.M.: Complex Variable Methods in Elasticity. Wiley Intersciencem, New York (1971)

    MATH  Google Scholar 

  21. Erdogan, F., Gupta, G.D.: On the numerical solution of singular integral equations. Q. Appl. Math. 28(6), 525–534 (1972)

    MathSciNet  MATH  Google Scholar 

  22. Erdelyi, A., Bateman, H.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  23. Lam, K.Y., Cleary, M.P.: Slippage and re-initiation of (hydraulic) fractures at frictional interfaces. Int. J. Numer. Anal. Methods 8(6), 589–600 (1984)

    Article  Google Scholar 

  24. Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A.: Natural fractures in shale: a review and new observations. AAPG Bull 98(11), 2165–2216 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China with Grant Nos. 11472205, 11202156, 11321062, 11242015 and 11172228, 11172228 and 11572235 and the Fundamental Research Funds for the Central Universities in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Li, Q., Liu, G. et al. Fundamental solutions of a crack impinging upon an interface slippage in laminated anisotropic bodies. Arch Appl Mech 86, 687–700 (2016). https://doi.org/10.1007/s00419-015-1055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1055-y

Keywords

Navigation