Skip to main content
Log in

Exact solutions for stability and free vibration of thin-walled Timoshenko laminated beams under variable forces

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an efficient thin-walled Timoshenko laminated beam subjected to variable forces is developed for the coupled stability and free vibration analyses. First, the analytical technique is employed to present the thin-walled laminated beam theory considering the transverse shear and the restrained warping induced shear deformation and the rotary inertia based on the orthogonal Cartesian coordinate system. The displacement field of thin-walled cross section is introduced based on the inclusion of second-order terms of finite rotation and the potential energy corresponding to the semitangential moments and the kinetic energy with rotary inertia effects are derived. The equations of motion are derived from the Hamilton’s principle, and the explicit expressions for displacement parameters are presented based on generalized power series expansions of displacement components. Finally, the exact (i.e., with arbitrary precision) static and dynamic stiffness matrices are determined using the force-displacement relations. Numerical examples are carried out focusing attention in the validation of the present theory with respect to other available results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vlasov V.Z.: Thin-Walled Elastic Beams. National Science Foundation, Washington, DC (1961)

    Google Scholar 

  2. Bauld N.R., Tzeng L.: A Vlasov theory for fiber-reinforced beams with thin-walled open cross sections. Int. J. Solids Struct. 20, 277–297 (1984)

    Article  MATH  Google Scholar 

  3. Song O., Librescu L.: Anisotropic and structural coupling on vibration and instability of spinning thin-walled beams. J. Sound Vib. 204, 477–494 (1997)

    Article  Google Scholar 

  4. Song S.J., Waas M.: Effects of shear deformation on buckling and free vibration of laminated composite beams. Compos. Struct. 37, 33–43 (1997)

    Article  Google Scholar 

  5. Matsunaga H.: Vibration and buckling of multilayered composite beams according to higher order deformation theories. J. Sound Vib. 246, 47–62 (2001)

    Article  Google Scholar 

  6. Barbero E.J., Raftoyiannis I.G.: Euler buckling of pultruded composite columns. Compos. Struct. 24, 139–147 (1993)

    Article  Google Scholar 

  7. Pandey M.D., Kabir M.Z., Sherbourne A.N.: Flexural–torsional stability of thin-walled composite I-section beams. Compos. Eng. 5, 321–342 (1995)

    Article  Google Scholar 

  8. Sherbourne A.N., Kabir M.Z.: Shear strain effects in lateral stability of thin-walled fibrous composite beams. J. Eng. Mech. 121, 640–647 (1995)

    Article  Google Scholar 

  9. Vo T.P., Lee J.: On sixfold coupled buckling of thin-walled composite beams. Compos. Struct. 90, 295–303 (2009)

    Article  Google Scholar 

  10. Lin Z.M., Polyzois D., Shah A.: Stability of thin-walled pultruded structural members by finite element method. Thin-Walled Struct. 24, 1–18 (1996)

    Article  MATH  Google Scholar 

  11. Loja M.A.R., Barbosa J.I., Mota Soares C.M.: Buckling behaviour of laminated beam structures using a higher-order discrete model. Compos. Struct. 38, 119–131 (1997)

    Article  Google Scholar 

  12. Civalek Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004)

    Article  Google Scholar 

  13. Civalek Ö., Kiracioglu O.: Free vibration analysis of Timoshenko beams by DSC method. Int. J. Numer. Methods Biomed. Eng. 26, 1890–1898 (2010)

    MATH  Google Scholar 

  14. Piovan M.T., Filipich C.P., Cortínez V.H.: Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams. J. Sound Vib. 316, 298–316 (2008)

    Article  Google Scholar 

  15. Piovan M.T., Cortínez V.H.: Mechanics of shear deformable thin-walled beams made of composite materials. Thin-Walled Struct. 45, 37–62 (2007)

    Article  Google Scholar 

  16. Jun L., Xiaobin L., Hongxing H.: Free vibration analysis of third-order shear deformable composite beams using dynamic stiffness method. Arch. Appl. Mech. 79, 1083–1098 (2009)

    Article  MATH  Google Scholar 

  17. Vo T.P., Thai H.T., Inam F.: Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory. Arch. Appl. Mech. 83, 605–622 (2013)

    Article  MATH  Google Scholar 

  18. Chandrashekhara K., Bangera K.M.: Free vibration of composite beams suing a refined shear flexible beam element. Comput. Struct. 43, 719–727 (1992)

    Article  MATH  Google Scholar 

  19. Marur S.R., Kant T.: Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modeling. J. Sound Vib. 194, 337–351 (1996)

    Article  Google Scholar 

  20. Wu X.X., Sun C.T.: Vibration analysis of laminated composite thin-walled beams using finite elements. AIAA J. 29, 736–742 (1990)

    Article  Google Scholar 

  21. Gupta R.K., Venkatesh A., Rao K.P.: Finite element analysis of laminated anisotropic thin-walled open-section beams. Compos. Struct. 3, 19–31 (1985)

    Article  Google Scholar 

  22. ABAQUS. Standard user’s manual, version 6.1, Hibbit, Kalsson & Sorensen Inc. (2003)

  23. Chang S.P., Kim S.B., Kim M.Y.: Stability of shear deformable thin-walled space frames and circular arches. J. Eng. Mech. 122, 844–854 (1996)

    Article  Google Scholar 

  24. Wang S.: Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory. Comput. Struct. 63, 525–538 (1997)

    Article  MATH  Google Scholar 

  25. Kim M.Y., Chang S.P., Kim S.B.: Spatial stability and free vibration of shear flexible thin-walled elastic beams. I: analytical approach. Int. J. Numer. Methods Eng. 37, 4097–4115 (1994)

    Article  MATH  Google Scholar 

  26. Vo T.P., Lee J.: Flexural–torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory. Int. J. Mech. Sci. 51, 631–641 (2009)

    Article  Google Scholar 

  27. Vo T.P., Lee J., Ahn N.: On sixfold coupled vibrations of thin-walled composite box beams. Compos. Struct. 89, 524–535 (2009)

    Article  Google Scholar 

  28. Kollá L.P., Springer G.S.: Mechanics of Composite Structures. Cambridge University Press, Cambridge, MA (2003)

    Book  Google Scholar 

  29. Wolfram Mathematica 7. Wolfram Research Inc., IL (2009)

  30. Wendroff B.: Theoretical Numerical Analysis. Academic Press, New York (1966)

    MATH  Google Scholar 

  31. Bathe K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  32. Cortínez V.H., Piovan M.T.: Vibration and buckling of composite thin-walled beams with shear deformability. J. Sound Vib. 258, 701–723 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NI., Lee, J. Exact solutions for stability and free vibration of thin-walled Timoshenko laminated beams under variable forces. Arch Appl Mech 84, 1785–1809 (2014). https://doi.org/10.1007/s00419-014-0886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0886-2

Keywords

Navigation