Skip to main content
Log in

Solution of problem of two dissimilar materials bonded at one interface subjected to temperature

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A solution of problem of two dissimilar materials bonded at one interface subjected to temperature is derived. To obtain a closed-form solution, a rational mapping function and a complex variable method are used. The coefficients of the homogeneous part of the stress function are expressed by Dunders’ parameters, but loading term of temperature is not expressed by them. As a demonstration, semi-strips bonded at one part at the ends are considered. The each strip is subjected to uniform temperature. Examples of stress distributions are shown. The relations of stress and temperature on the interface are described. Debondings on both sides of the interface are considered. Stress intensity of debonding (SID) is defined, and the values are investigated for various debonding lengths. And the debonding extension or the crack initiation into the material is investigated. The effects of material constants (Dundurs’ parameter) on SID are also investigated. By changing mapping function, other geometries can be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherepanov G.P.: Mechanics of Brittle Fracture. McGraw-Hill, New York (1977)

    Google Scholar 

  2. Piva A., Viola E.: Biaxial load effects on a crack between dissimilar media. Eng. Fract. Mech. 13, 143–174 (1980)

    Article  Google Scholar 

  3. Sih, G.C., Chen, E.P.: Cracks in Composite Materials. Mechanics Fracture. Martinas Nijhoff, The Hague (1981)

  4. Rice J.C.: Elastic fracture mechanics concepts for interfacial cracks. ASME J. Appl. Mech. 55, 98–103 (1988)

    Article  Google Scholar 

  5. Murakami, Y. (Chief ed.): Stress Intensity Factors Handbook, vols. 1, 2. Pergamon Press, Oxford (1986)

  6. Murakami, Y. (Chief ed.): Stress Intensity Factors Handbook, vol. 3. The Society of Materials Science, Japan and Pergamon Press, Oxford (1992)

  7. Murakami, Y. (Chief ed.): Stress intensity factors handbook, vols. 4, 5. The Society of Materials Science, Japan and Elsevier, Amsterdam (2001)

  8. Comminou M.: An overview of interface cracks. Eng. Fract. Mech. 37(1), 197–208 (1990)

    Article  Google Scholar 

  9. Theocaris P.S., Dafermos K.: The elastic strip under mixed boundary conditions. ASME-E J. Appl. Mech. 31, 714–716 (1964)

    Article  MATH  Google Scholar 

  10. Hess M.S.: The end problem for a laminated elastic strip—I. The general solution. J. Compos. Mater. 3, 262–280 (1969)

    Article  Google Scholar 

  11. Hess M.S.: The end problem for a laminated elastic strip—II. Differential expansion stresses. J. Compos. Mater. 3, 630–641 (1969)

    Google Scholar 

  12. Chow T.W., Hirth J.P.: Stress distribution in a bimaterial plate under uniform external loadings. J. Compos. Mater. 4, 102–112 (1970)

    Google Scholar 

  13. Keer L.M.: Stress analysis for bonded layers. ASME-E J. Appl. Mech. 41, 679–638 (1974)

  14. Keer L.M., Chantaramungkorn K.: Stress analysis for a double lap joint. ASME-E J. Appl. Mech. 42, 353–357 (1975)

    Article  Google Scholar 

  15. Bogy D.B.: The plane solution for joined dissimilar elastic semi strips under tension. ASME-E J. Appl. Mech. 42, 93–98 (1975)

    Article  MATH  Google Scholar 

  16. Adams G.G., Bogy D.B.: The plane solution for bending of joined dissimilar elastic semi-infinite strips. Int. J. Solids Struct. 12, 239–249 (1976)

    Article  MATH  Google Scholar 

  17. Delale F., Erdogan F.: Bonded orthotropic strips with cracks. Int. J. Fract. 15(4), 343–364 (1979)

    Google Scholar 

  18. Adams G.G.: A semi-infinite elastic strip bonded to an infinite strip. ASME-E J. Appl. Mech. 47, 789–794 (1980)

    Article  MATH  Google Scholar 

  19. Kundu T.: Transient response of an interface crack in a layered plate. ASME-E J. Appl. Mech. 53, 579–596 (1986)

    Article  Google Scholar 

  20. Suhir, E.: Stresses in bi-metal thermostats. ASME-E J. Appl. Mech. 53, 657–660 (1986)

    Google Scholar 

  21. Lee K.Y.: Boundary element analysis of stress intensity factors for bimaterial interface cracks. Eng. Fract. Mech. 29(4), 461–472 (1988)

    Article  Google Scholar 

  22. Matas P.P.L., McMeeking R.M., Charalambides P.G., Drory M.D.: A method for calculating stress intensities in bimaterial fracture. Int. J. Fract. 40(4), 235–254 (1989)

    Article  Google Scholar 

  23. Tan C.L., Gao Y.L.: Treatment of bimaterial interface crack problems using the boundary element method. Eng. Fract. Mech. 36(6), 919–932 (1990)

    Article  Google Scholar 

  24. Hasebe N., Okumura M., Nakamura T.: Partially bonded bimaterial plane under tension. J. Eng. Mech. 116(9), 2017–2034 (1990)

    Article  Google Scholar 

  25. Hasebe N., Okumura M., Nakamura T.: Solution of bonded dissimilar planes under couples. J. Eng. Mech. 116(12), 2722–2737 (1990)

    Article  Google Scholar 

  26. Hasebe, N., Okumura, M., Nakamura, T.: A crack and debonding at the edge of bonded bimaterial half planes under couples. Jpn. Soc. Mater. Sci. Jpn. 39(445), 1405–1410 (in Japanese) (1990)

    Google Scholar 

  27. Tsai M.Y., Morton J.: The stresses in a thermally loaded bimaterial interface. Int. J. Solids Struct. 28(8), 1053–1075 (1991)

    Article  Google Scholar 

  28. Okumura, M., Hasebe, N., Nakamura, T.: Conditions of a crack initiation or debonding extension at a debonded tip of the partially bonded bimaterial half planes. Proc. Jpn. Soc. Civ. Eng. 428, 77–86 (in Japanese) (1991)

    Google Scholar 

  29. Okumura M., Hasebe N., Nakamura T.: Cracking and debonding on bimaterial interface under uniform loading. ASCE J. Eng. Mech. 118(6), 1113–1127 (1992)

    Article  Google Scholar 

  30. Okumura, M., Hasebe, N., Nakamura, T.: Stress analysis of conditions for an initial cracking and a debonding development. In: 35th Japan Congress of Materials Research, Society of Materials Science, Japan, pp. 205-212 (1992)

  31. Hasebe N., Okumura M., Nakamura T.: Bonded bi-material half planes with semi-elliptical notch under tension along the interface. J. Appl. Mech. 59, 77–84 (1992)

    Article  MATH  Google Scholar 

  32. Hasebe, N., Kato, S., Ueda, A., Nakamura, T.: Stress analysis of dissimilar strip with debondings. Trans. Jpn. Soc. Mech. Eng. 66(577A), 1959–1966 (in Japanese) (1994)

    Google Scholar 

  33. Hasebe N., Kato S., Ueda A., Nakamura T.: Stress analysis of bimaterial strip with debondings under tension. JSME Int. J. 39(2A), 157–165 (1996)

    Google Scholar 

  34. Hasebe N., Kato S., Nakamura T.: Bimaterial problem of strip with debondings under tension and bending. Am. Soc. Test. Mater. STP 1220(25), 206–221 (1995)

    Google Scholar 

  35. Okumura M., Hasebe N., Nakamura T.: Bimaterial plane with elliptic hole under uniform tension normal to the interface. Int. J. Fract. 71, 293–310 (1995)

    Article  Google Scholar 

  36. Frankle M., Mung D., Yang Y.Y.: Stress singularities in a bimaterial joint with inhomogeneous temperature distribution. Int. J. Solids Struct. 33(14), 2039–2054 (1996)

    Article  Google Scholar 

  37. Banks-Sills L., Sherer A.: A conservative integral for determining stress intensity factor of a bimaterial notch. Int. J. Fract. 115(1), 1–25 (2002)

    Article  Google Scholar 

  38. Chang, J., Xu, J.Q.: The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface. Int. J. Mech. 49(7), 888–879 (2007)

    Google Scholar 

  39. Lan X., Noda N., Mihinaka K., Zhang Y.: The effect of material combinations and relative crack size to the stress intensity factors at the crack tip of a bi-material bonded strips. Eng. Fract. Mech. 78, 2572–2584 (2011)

    Article  Google Scholar 

  40. Dundurs J.: Effect of elastic constants on stress in composite under plane deformation. J. Compos. Mater. 1, 310–322 (1967)

    Google Scholar 

  41. Muskhelishvili, N.I.: Some basic problems of mathematical theory of elasticity, 4th ed. Noordfoff, The Netherlands (1963)

  42. Hasebe N., Horiuchi Y.: Stress analysis for a strip with semi-elliptical notches or crack on both sides by means of rational mapping function. Ing. Arch. 47(3), 169–179 (1978)

    Article  MATH  Google Scholar 

  43. Hasebe N., Inohara S.: Stress analysis of a semi-infinite plate with an oblique edge crack. Ing. Arch. 49(1), 51–62 (1980)

    Article  MATH  Google Scholar 

  44. Hasebe N., Wang X.: Complex variable method for thermal stress problem. J. Therm. Stresses 28, 595–648 (2005)

    Article  MathSciNet  Google Scholar 

  45. Salganic R.L.: The brittle fracture of cemented body. PMM J. Appl. Math. Phys. 27(5), 1468–1478 (1963)

    Google Scholar 

  46. Hasebe N., Tsutsui S., Nakamura T.: Debondings at a semielliptical rigid inclusion on the rim of a half plane. ASME E J. Appl. Mech. 55, 574–579 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Hasebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasebe, N., Kato, S. Solution of problem of two dissimilar materials bonded at one interface subjected to temperature. Arch Appl Mech 84, 913–931 (2014). https://doi.org/10.1007/s00419-014-0840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0840-3

Keywords

Navigation