Skip to main content
Log in

A phase field approach for multivariant martensitic transformations of stable and metastable phases

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A phase field model approach for multivariant martensitic transformations of stable and metastable phases is introduced. The evolution of the microstructure is examined with respect to elastic energy minimization in which one or two martensitic orientation variants are considered. In this context, the martensitic nucleation behavior is simulated for different activation barriers. Furthermore, the influence of time-dependent external loads on the formation of the different phases is studied. The numerical implementation is performed with finite elements and an implicit time integration scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artemev A., Wang Y., Khachaturyan A.G.: Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses. Acta. Mater. 48, 2503–2518 (2000)

    Article  Google Scholar 

  2. Bartel T., Menzel A., Svendsen B.: Thermodynamic and relaxation based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59, 1004–1019 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chen L.Q., Wang Y., Khachaturyan A.G.: Kinetics of tweed and twin formation during an ordering transition in a substitutional solid solution. Philos. Mag. Lett. 65(1), 15–23 (1992)

    Article  Google Scholar 

  4. Cherkaoui M., Berveiller M.: Micromechanical modeling of the martensitic transformation induced plasticity steels. Smart Mater. Struct. 9, 592–603 (2000)

    Article  Google Scholar 

  5. Engin C., Urbassek H.M.: Molecular dynamics investigation of the fcc → bcc phase transformation in Fe. Comput. Mater. Sci. 41, 297–304 (2008)

    Article  Google Scholar 

  6. Entel P., Meyer R., Kadau K.: Molecular dynamics simulations of martensitic transformations. Phil. Mag. B. 80, 183–194 (2000)

    Article  Google Scholar 

  7. Fischer F.D., Berveiller M., Tanaka K., Oberaigner E.R.: Continuum mechanical aspects of phase transformations in solids. Arch. Appl. Mech. 64, 54–85 (1994)

    MATH  Google Scholar 

  8. Gao L.F., Feng X.Q., Gao H.: A phase field method for simulating morphological evolution of vesicles in electric fields. J. Comput. Phys. 228, 4162–4181 (2009)

    Article  MATH  Google Scholar 

  9. Hildebrand F., Miehe C.: A regularized sharp interface model for phase transformation accounting for prescribed sharp interface kinetics. Proc. Appl. Math. Mech. 10, 673–676 (2010)

    Article  Google Scholar 

  10. Hildebrand F.E., Miehe C.: Comparison of two bulk energy approaches for the phasefield modeling of two-variant martensitic laminate microstructure. Techn. Mech. 32, 3–20 (2012)

    Google Scholar 

  11. Jin Y.M., Artemev A., Khachaturyan A.G.: Three dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulations of \({\zeta_{2}^{\prime}}\) martensite in AuCd alloys. Acta. Mater. 49, 2309–2320 (2001)

    Article  Google Scholar 

  12. Kundin J., Raabe D., Emmerich H.: A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids 59, 2082–2102 (2011)

    Article  MathSciNet  Google Scholar 

  13. Levitas V.I., Lee D.-W., Preston D.L.: Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int. J. Plast. (2009) doi:10.1016/j.ijplas.2009.08.003

  14. Rubini S., Ballone P.: Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni-Al alloys. Phys. Rev. B. 48, 99–111 (1993)

    Article  Google Scholar 

  15. Sandoval L., Urbassek H.M.: Transformation pathways in the solid-solid phase transitions of iron nanowires. Appl. Phys. Lett. 95, 191909 (2009)

    Article  Google Scholar 

  16. Schrade D., Mueller R., Xu B.X., Gross D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196, 4365–4374 (2007)

    Article  MATH  Google Scholar 

  17. Schrade D., Xu B.X., Müller R., Gross D: On phase field modeling of ferroelectrics: parameter identification and verification. SMASIS 2008(1), 299–306 (2008)

    Google Scholar 

  18. Schrade D., Müller R., Gross D.: Parameter identification in phase field models for ferroelectrics. Proc. Appl. Math. Mech. 9, 369–370 (2009)

    Article  Google Scholar 

  19. Wang Y., Khachaturyan A.G.: Three-dimensional field model and computer modeling of martensitic transformations. Acta. Mater. 45(2), 759–773 (1997)

    Article  Google Scholar 

  20. Wechsler M.S., Lieberman D.S., Read T.: On the theory of the formation of martensite. Trans. AIME 197, 1503–1515 (1953)

    Google Scholar 

  21. Yamanaka A., Takaki T., Tomita Y.: Elastoplastic phase-field simulation of self- and plastic accommodations in cubic → tetragonal martensitic transformation. Mater. Sci. Eng. A. 491, 378–384 (2008)

    Article  Google Scholar 

  22. Zhang W., Jin Y.M., Khachaturyan A.G.: Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys. Acta. Mater. 55, 565–574 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, R., Müller, R., Kuhn, C. et al. A phase field approach for multivariant martensitic transformations of stable and metastable phases. Arch Appl Mech 83, 849–859 (2013). https://doi.org/10.1007/s00419-012-0721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0721-6

Keywords

Navigation