Skip to main content
Log in

Shape optimization against buckling of micro- and nano-rods

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we analyze elastic buckling of micro- and nano-rods based on Eringen’s nonlocal elasticity theory. By using the Pontryagin’s maximum principle, we determine optimality condition for a rod simply supported at both ends and loaded with axial compressive force only. Thus, the problem that we treat represents a generalization of the classical Clausen problem formulated for Bernoulli–Euler rod theory. Several concrete examples are treated in details, and the increase in buckling load capacity is determined. In solving the problem numerically, we used a first integral of the resulting system of equations, which helped us to monitor error of the numerical procedure. Our results show that nonlocal effects decrease the buckling load of optimally shaped rod. However, nonlocal theory leads to the optimal rod with the cross-sectional area at the rod ends different from zero. This is important property since zero value of the cross-section at the ends, which optimally shaped rod according to Bernoulli–Euler rod theory has, is unacceptable in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lagrange, J.-L.: Sur la figure des colonnes. In: Serret, M.J.-A. (ed.) Ouveres de Lagrange, vol. 2, pp. 125–170. Gauthier-Villars, Paris (1868)

  2. Clausen, T.: Über die Form architektonischer Säulen. Bull. Cl. Physico Math. Acad. St. Pétersbourg 9, 369–380 (1851)

    Google Scholar 

  3. Cox S.J.: The shape of the ideal column. Math. Intell. 14, 16–24 (1992)

    Article  MATH  Google Scholar 

  4. Seyranian A.P., Privalova O.G.: The Lagrange problem on an optimal column: old and new results. Struct. Multidisc. Optim. 25, 393–410 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Seyranian A.P.: The Lagrange problem on optimal column. Adv. Mech. (Uspekhi Mekhaniki) 2, 45–96 (2003)

    Google Scholar 

  6. Keller J.: The shape of the strongest column. Arch. Rat. Mech. Anal. 5, 275–285 (1960)

    Article  Google Scholar 

  7. Tadjbakhsh I., Keller J.B.: Strongest columns and isoperimetric inequalities for eigenvalues. J. Appl. Mech. ASME 29, 159–164 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Keller J.B., Niordson F.I.: The tallest column. J. Math. Mech. 16, 433–446 (1966)

    MathSciNet  MATH  Google Scholar 

  9. Olhoff N., Rasmussen S.H.: On the single and bimodal optimum buckling loads of clamped columns. Int. J. Solids Struct. 13, 605–614 (1977)

    Article  MATH  Google Scholar 

  10. Seyranian A.P.: On a problem of Lagrange. Mech. Solids (Mekhanika Tverdogo Tela) 19, 100–111 (1984)

    MathSciNet  Google Scholar 

  11. Masur E.F.: Optimal structural design under multiple eigenvalue constraints. Int. J. Solids Struct. 20, 211–231 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox S.J., Overton M.L.: On the optimal design of columns against buckling. SIAM J. Math. Anal. 23, 287–325 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Atanackovic T.M., Seyranian A.P.: Application of Pontryagin’s principle to bimodal optimization problems. Struct. Multidisc. Optim. 37, 1–12 (2008)

    Article  MathSciNet  Google Scholar 

  14. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  15. Sudak L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  Google Scholar 

  16. Wang C.M., Zhang Y.Y., Ramesh S.S., Kitipornchai S.: Buckling analysis if micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904–3909 (2006)

    Article  Google Scholar 

  17. Lu P., Lee H.P., Lu C., Zhang P.Q.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)

    Article  MATH  Google Scholar 

  18. Wang Q., Wang C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18, 075702 (2007)

    Article  Google Scholar 

  19. Challamel N., Wang C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  20. Challamel N., Wang C.M.: On lateral-torsional buckling of non-local beams. Adv. J. Math. Mech. 2, 389–398 (2010)

    MathSciNet  Google Scholar 

  21. Babaei H., Shahidi A.R.: Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method. Arch. Appl. Mech. 81, 1051–1062 (2011)

    Article  Google Scholar 

  22. Atanackovic T.M.: Optimal shape of an Elastic rod in flexural-torsional buckling. Z. Angew. Math. Mech. ZAMM 87, 399–405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Atanackovic T.M.: Stability Theory of Elastic Rods. World Scientific, River Edge (1997)

    MATH  Google Scholar 

  24. Eringen A.C.: Theory of nonlocal elasticity and some applications. Res. Mech. 21, 313–342 (1987)

    Google Scholar 

  25. Grinev V.B., Filippov A.P.: Optimization of Rods with Respect to Spectrum of Eigenvalues. Naukova Dumka, Kiev (1979)

    Google Scholar 

  26. Novakovic B.N., Atanackovic T.M.: On the optimal shape of a compressed column subjected to restrictions on the cross-sectional area. Struct. Multidisc. Optim. 43, 683–691 (2011)

    Article  Google Scholar 

  27. Seyranian A.P.: Homogeneous functionals and structural optimization problems. Int. J. Solids Struct. 15, 749–759 (1979)

    Article  MATH  Google Scholar 

  28. Vujanovic B.D., Atanackovic T.M.: An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  29. Sage A.P., White C.C.: Optimum System Control. Prentice-Hall, New Jersey (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor M. Atanackovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanackovic, T.M., Novakovic, B.N. & Vrcelj, Z. Shape optimization against buckling of micro- and nano-rods. Arch Appl Mech 82, 1303–1311 (2012). https://doi.org/10.1007/s00419-012-0661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0661-1

Keywords

Navigation