Skip to main content
Log in

Configurational force on a lattice dislocation and the Peierls stress

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The solution for a crystalline edge dislocation is presented within a framework of continuum linear elasticity, and is compared with the Peierls–Nabarro solution based on a semi-discrete method. The atomic disregistry and the shear stress across the glide plane are discussed. The Peach–Koehler configurational force is introduced as the gradient of the strain energy with respect to the dislocation position between its two consecutive equilibrium positions. The core radius is assumed to vary periodically between equilibrium positions of the dislocation. The critical force is expressed in terms of the core radii or the energies of the stable and unstable equilibrium configurations. This is used to estimate the Peierls stress for both wide and narrow dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peierls R. (1940) The size of a dislocation. Proc. Phys. Soc. 52, 34–37

    Article  Google Scholar 

  2. Nabarro F.R.N. (1947) Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256–272

    Article  Google Scholar 

  3. Joós B., Duesbery M.S. (1987) The Peierls–Nabarro model and the mobility of the dislocation line. Phil. Mag. A 81, 1329–1340

    Google Scholar 

  4. Nabarro F.R.N. (1989) The Peierls stress for a wide dislocation. Mater. Sci. Eng. A 113, 315–326

    Article  Google Scholar 

  5. Indenbom V.L., Petukhov B.V., Lothe J. (1992) Dislocation motion over the Peierls barrier. In: Indenbom V.L., Petukhov B.V., Lothe J. (eds). Elastic Strain Fields and Dislocation Mobility. North Holland, Amsterdam, pp. 489–516

    Google Scholar 

  6. Bulatov V.V., Kaxiras E. (1997) Semidiscrete variational Peierls framework for dislocation core properties. Phys. Rev. Lett. 78, 4221–4224

    Article  Google Scholar 

  7. Nabarro F.R.N. (1997) Theoretical and experimental estimates of the Peierls stress. Phil. Mag. A 75, 703–711

    Google Scholar 

  8. Schoeck G. (1999) Peierls energy of dislocations: a critical assessment. Phys. Rev. Lett. 82, 2310–2313

    Article  Google Scholar 

  9. Lu G., Kioussis N., Bulatov V.V., Kaxiras E. (2000) The Peierls–Nabarro model revisited. Phil. Mag. Lett. 80, 675–682

    Article  Google Scholar 

  10. Joós B., Zhou J. (2001) The Peierls stress of dislocations: an analytic formula. Phys. Rev. Lett. 78, 266–269

    Article  Google Scholar 

  11. Schoeck G. (2005) The Peierls model: progress and limitations. Mater. Sci. Eng. A 400–401, 7–17

    Google Scholar 

  12. Lubarda, V.A., Markenscoff, X.: A variable core model and the Peierls stress for the mixed (screw-edge) dislocation (2006) (submitted)

  13. Lothe J. (1992) Dislocations in continuous elastic media. In: Indenbom V.J., Lothe J. (eds) Elastic Strain Fields and Dislocation Mobility. North Holland, Amsterdam, pp. 187–235

    Google Scholar 

  14. de Wit R. (1973) Theory of disclinations: II. Continuous and discrete disclinations in anisotropic elasticity. J. Res. Nat. Bureau Standards 77A: 49–100

    Google Scholar 

  15. Eshelby J.D. (1966) A simple derivation of the elastic field of an edge dislocation. Br. J. Appl. Phys. 17, 1131–1135

    Article  Google Scholar 

  16. Lubarda V.A., Blume J.A., Needleman A. (1993) An analysis of equilibrium dislocation distributions. Acta Metall. Mater. 41, 625–642

    Article  Google Scholar 

  17. Lubarda V.A., Kouris D.A. (1966) Stress fields due to dislocation walls in infinite and semi-infinite bodies. Mech. Mater. 23, 169–189

    Article  Google Scholar 

  18. Hirth J.P., Lothe J. (1982) Theory of Dislocations, 2nd ed. Wiley, New York

    Google Scholar 

  19. Leibfried G., Lücke K. (1947) Über das Spannungsfeld einer Versetzung. Z. Phys. 126, 450–464

    Google Scholar 

  20. Nabarro F.R.N. (1967) Theory of Crystal Dislocations. Oxford University Press, Oxford

    Google Scholar 

  21. Lubarda V.A. (2006) Dislocation equilibrium conditions revisited. Int. J. Solids Struct. 43, 3444–3458

    Article  MATH  Google Scholar 

  22. Maugin G.A. (1995) Material forces: concepts and applications. Appl. Mech. Rev. 48, 247–285

    Article  MathSciNet  Google Scholar 

  23. Kienzler R., Herrmann G. (2001) Mechanics in Material Space. Springer, Berlin Heidelberg New York

    Google Scholar 

  24. Eshelby J.D. (1970) Energy relations and the energy–momentum tensor in continuum mechanics. In: Kanninen M.F., Adler W.F., Rosenfield A.R., Janee R.I. (eds) Inelastic behavior of solids. McGraw–Hill, New York, pp. 77–115

    Google Scholar 

  25. Eshelby J.D. (1980) The energy–momentum tensor of complex continua. In: Kröner E., Anthony K.-H., (eds) Continuum Models of Discrete Systems. University of Waterloo Press, Canada, pp. 651–665

    Google Scholar 

  26. Lubarda V.A. (2003) The effects of couple stresses on dislocation strain energy. Int. J. Solids Struct. 40, 3807–3826

    Article  MATH  Google Scholar 

  27. Lazar M. (2005) Peach–Koehler forces within the theory of nonlocal elasticity. In: Steinmann P., Maugin G.A. (eds.) Mechanics of material forces. Springer, Berlin Heidelberg New York, pp. 149–158

    Chapter  Google Scholar 

  28. Indenbom V.L., Orlov A.N. (1962) Physical theory of plasticity and strength. Usp. Fiz. Nauk. 76, 557–591

    Google Scholar 

  29. Hobart R. (1965) Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944–1948

    Article  Google Scholar 

  30. Foreman A.J., Jaswon W.A., Wood J.K. (1951) Factors controlling dislocation widths. Proc. Phys. Soc. A 64, 156–163

    Article  Google Scholar 

  31. Huntington H.B. (1955) Modification of the Peierls–Nabarro model for edge dislocation core. Proc. Phys. Soc. Lond. B 68, 1043–1048

    Article  MATH  Google Scholar 

  32. Lee M.S., Dundurs J. (1972) On the Peierls force. Phil. Mag. 26, 929–933

    Google Scholar 

  33. Kelly A., Macmillan N.H. (1986) Strong Solids, 3rd ed. Clarendon, Oxford

    Google Scholar 

  34. Estrada R., Kanwal R.P. (2000) Singular Integral Equations. Birkhäuser, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lubarda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubarda, V.A., Markenscoff, X. Configurational force on a lattice dislocation and the Peierls stress. Arch Appl Mech 77, 147–154 (2007). https://doi.org/10.1007/s00419-006-0068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-006-0068-y

Keywords

Navigation