Skip to main content

Advertisement

Log in

Soluble form of LR11 is highly increased in the vitreous fluids of patients with idiopathic epiretinal membrane

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

LR11 (also called SorLA or SORL1) is a migration regulator of adherent cells with the immature proliferative phenotype. The present study investigated the clinical and pathological involvement of the soluble form of LR11 (sLR11) in the idiopathic epiretinal membrane (iERM).

Methods

The subjects were 51 patients with iERM (24 cellophane macular reflex (CMR) and 27 preretinal macular fibrosis (PMF)) and 45 patients with macular holes as age and sex-matched controls. Vitreous sLR11 and transforming growth factor (TGF)β2 levels were measured by ELISA.

Results

The sLR11 levels in the vitreous fluids of patients with iERM (20.2 ± 8.1 ng/mL) were significantly higher than those in controls (11.4 ± 4.7 ng/mL). Among the patients with iERM, the vitreous sLR11 levels were significantly higher in PMF (23.6 ± 8.2 ng/mL), than those in CMR (16.5 ± 5.9 ng/mL). Multivariate regression analysis of the studied factors showed that sLR11 was a unique factor independently contributing to the discrimination of the iERM patients against the control subjects (odds ratio [OR] 1.35 per 1-ng/mL increase, 95% CI 1.09–1.67; P = 0.004). ROC analysis showed that the sensitivity and the specificity of sLR11, but not of other studied factors, categorized into the rank of moderate accuracy. Finally, there was a positive correlation (R = 0.588; P = 0.003) between the vitreous levels of sLR11 and TGFβ2 using the available samples.

Conclusions

sLR11 levels in vitreous fluids were specifically increased in patients with iERM, suggesting the involvement in the pathology of proliferative and migrating cells for the development of iERM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2

Similar content being viewed by others

References

  1. McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye (Lond) 1(Pt 2):263–281. doi:10.1038/eye.1987.46

    Article  Google Scholar 

  2. Foos RY (1977) Vitreoretinal juncture; epiretinal membranes and vitreous. Invest Ophthalmol Vis Sci 16:416–422

    CAS  PubMed  Google Scholar 

  3. Smiddy WE, Maguire AM, Green WR, Michels RG, de la Cruz Z, Enger C, Jaeger M, Rice TA (1989) Idiopathic epiretinal membranes. Ultrastructural characteristics and clinicopathologic correlation. Ophthalmology 96:811–820, discussion 821

    Article  CAS  PubMed  Google Scholar 

  4. Sivalingam A, Kenney J, Brown GC, Benson WE, Donoso L (1990) Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 108:869–872

    Article  CAS  PubMed  Google Scholar 

  5. Harada C, Mitamura Y, Harada T (2006) The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res 25:149–164. doi:10.1016/j.preteyeres.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  6. Campochiaro PA, Glaser BM (1985) Endothelial cells release a chemoattractant for retinal pigment epithelial cells in vitro. Arch Ophthalmol 103:1876–1880

    Article  CAS  PubMed  Google Scholar 

  7. Iannetti L, Accorinti M, Malagola R, Bozzoni-Pantaleoni F, Da Dalt S, Nicoletti F, Gradini R, Traficante A, Campanella M, Pivetti-Pezzi P (2011) Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci 52:5786–5789. doi:10.1167/iovs.10-7116

    Article  CAS  PubMed  Google Scholar 

  8. Vinores SA, Henderer JD, Mahlow J, Chiu C, Derevjanik NL, Larochelle W, Csaky C, Campochiaro PA (1995) Isoforms of platelet-derived growth factor and its receptors in epiretinal membranes: immunolocalization to retinal pigmented epithelial cells. Exp Eye Res 60:607–619

    Article  CAS  PubMed  Google Scholar 

  9. Frank RN, Amin RH, Eliott D, Puklin JE, Abrams GW (1996) Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol 122:393–403

    Article  CAS  PubMed  Google Scholar 

  10. Jiang M, Bujo H, Ohwaki K, Unoki H, Yamazaki H, Kanaki T, Shibasaki M, Azuma K, Harigaya K, Schneider WJ, Saito Y (2008) Ang II-stimulated migration of vascular smooth muscle cells is dependent on LR11 in mice. J Clin Invest 118:2733–2746. doi:10.1172/jci32381

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsuo M, Ebinuma H, Fukamachi I, Jiang M, Bujo H, Saito Y (2009) Development of an immunoassay for the quantification of soluble LR11, a circulating marker of atherosclerosis. Clin Chem 55:1801–1808. doi:10.1373/clinchem.2009.127027

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi M, Bujo H, Shiba T, Jiang M, Maeno T, Shirai K (2012) Enhanced circulating soluble LR11 in patients with diabetic retinopathy. Am J Ophthalmol 154:187–192. doi:10.1016/j.ajo.2012.01.035

    Article  CAS  PubMed  Google Scholar 

  13. Ogita M, Miyauchi K, Jiang M, Kasai T, Tsuboi S, Naito R, Konishi H, Dohi T, Yokoyama T, Okazaki S, Shimada K, Bujo H, Daida H (2014) Circulating soluble LR11, a novel marker of smooth muscle cell proliferation, is enhanced after coronary stenting in response to vascular injury. Atherosclerosis 237:374–378. doi:10.1016/j.atherosclerosis.2014.08.044

    Article  CAS  PubMed  Google Scholar 

  14. Ogita M, Miyauchi K, Kasai T, Tsuboi S, Wada H, Naito R, Konishi H, Dohi T, Tamura H, Okazaki S, Yanagisawa N, Shimada K, Suwa S, Jiang M, Bujo H, Daida H (2016) Prognostic impact of circulating soluble LR11 on long-term clinical outcomes in patients with coronary artery disease. Atherosclerosis 244:216–221. doi:10.1016/j.atherosclerosis.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Jin W, Jiang M, Han X, Han X, Murano T, Hiruta N, Ebinuma H, Piao L, Schneider WJ, Bujo H (2016) Circulating soluble form of LR11, a regulator of smooth muscle cell migration, is a novel marker for intima-media thickness of carotid arteries in type 2 diabetes. Clin Chim Acta 457:137–141. doi:10.1016/j.cca.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  16. Shiba T, Bujo H, Takahashi M, Sato Y, Jiang M, Hori Y, Maeno T, Shirai K (2013) Vitreous fluid and circulating levels of soluble lr11, a novel marker for progression of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 251:2689–2695. doi:10.1007/s00417-013-2373-9

    Article  CAS  PubMed  Google Scholar 

  17. Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and associations of epiretinal membranes. Ophthalmology 104:1033–1040. doi:10.1016/s0161-6420(97)30190-0

    Article  CAS  PubMed  Google Scholar 

  18. Ng CH, Cheung N, Wang JJ, Islam AF, Kawasaki R, Meuer SM, Cotch MF, Klein BE, Klein R, Wong TY (2011) Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology 118:694–699. doi:10.1016/j.ophtha.2010.08.009

    Article  PubMed  Google Scholar 

  19. Nohara A, Kobayashi J, Kawashiri MA, Tada H, Inazu A, Jiang M, Mabuchi H, Bujo H (2014) Clinical significance of measuring soluble LR11, a circulating marker of atherosclerosis and HbA1c in familial hypercholesterolemia. Clin Biochem 47:1326–1328. doi:10.1016/j.clinbiochem.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  20. Miyazaki M, Nakamura H, Kubo M, Kiyohara Y, Iida M, Ishibashi T, Nose Y (2003) Prevalence and risk factors for epiretinal membranes in a Japanese population: the Hisayama study. Graefes Arch Clin Exp Ophthalmol 241:642–646. doi:10.1007/s00417-003-0723-8

    Article  PubMed  Google Scholar 

  21. Kawasaki R, Wang JJ, Sato H, Mitchell P, Kato T, Kawata S, Kayama T, Yamashita H, Wong TY (2009) Prevalence and associations of epiretinal membranes in an adult Japanese population: the Funagata study. Eye (Lond) 23:1045–1051. doi:10.1038/eye.2008.238

    Article  CAS  Google Scholar 

  22. Whittle AJ, Jiang M, Peirce V, Relat J, Virtue S, Ebinuma H, Fukamachi I, Yamaguchi T, Takahashi M, Murano T, Tatsuno I, Takeuchi M, Nakaseko C, Jin W, Jin Z, Campbell M, Schneider WJ, Vidal-Puig A, Bujo H (2015) Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nat Commun 6:8951. doi:10.1038/ncomms9951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bellhorn MB, Friedman AH, Wise GN, Henkind P (1975) Ultrastructure and clinicopathologic correlation of idiopathic preretinal macular fibrosis. Am J Ophthalmol 79:366–373

    Article  CAS  PubMed  Google Scholar 

  24. Kishi S (2016) Vitreous anatomy and the vitreomacular correlation. Jpn J Ophthalmol 60:239–273. doi:10.1007/s10384-016-0447-z

    Article  PubMed  Google Scholar 

  25. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  26. Okada M, Ogino N, Matsumura M, Honda Y, Nagai Y (1995) Histological and immunohistochemical study of idiopathic epiretinal membrane. Ophthalmic Res 27:118–128

    Article  CAS  PubMed  Google Scholar 

  27. Kawahara S, Hata Y, Kita T, Arita R, Miura M, Nakao S, Mochizuki Y, Enaida H, Kagimoto T, Goto Y, Hafezi-Moghadam A, Ishibashi T (2008) Potent inhibition of cicatricial contraction in proliferative vitreoretinal diseases by statins. Diabetes 57:2784–2793. doi:10.2337/db08-0302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minchiotti S, Stampachiacchiere B, Micera A, Lambiase A, Ripandelli G, Billi B, Bonini S (2008) Human idiopathic epiretinal membranes express NGF and NGF receptors. Retina 28:628–637. doi:10.1097/IAE.0b013e31815ec275

    Article  PubMed  Google Scholar 

  29. Guidry C (1997) Tractional force generation by porcine Muller cells. Development and differential stimulation by growth factors. Invest Ophthalmol Vis Sci 38:456–468

    CAS  PubMed  Google Scholar 

  30. Bu SC, Kuijer R, van der Worp RJ, Postma G, Renardel de Lavalette VW, Li XR, Hooymans JM, Los LI (2015) Immunohistochemical evaluation of idiopathic epiretinal membranes and in vitro studies on the effect of TGF-beta on Muller cells. Invest Ophthalmol Vis Sci 56:6506–6514. doi:10.1167/iovs.14-15971

    Article  CAS  PubMed  Google Scholar 

  31. Kritzenberger M, Junglas B, Framme C, Helbig H, Gabel VP, Fuchshofer R, Tamm ER, Hillenkamp J (2011) Different collagen types define two types of idiopathic epiretinal membranes. Histopathology 58:953–965. doi:10.1111/j.1365-2559.2011.03820.x

    Article  PubMed  Google Scholar 

  32. George B, Chen S, Chaudhary V, Gonder J, Chakrabarti S (2009) Extracellular matrix proteins in epiretinal membranes and in diabetic retinopathy. Curr Eye Res 34:134–144. doi:10.1080/02713680802585946

    Article  CAS  PubMed  Google Scholar 

  33. Kohno RI, Hata Y, Kawahara S, Kita T, Arita R, Mochizuki Y, Aiello LP, Ishibashi T (2009) Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol 93:1020–1026. doi:10.1136/bjo.2008.155069

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Design and conduct study: R.H. and H.B. Collection: R.H., T.S. and T.M.; management, analysis, and interpretation of the data: R.H., M.J., N.H., M.T., M.H., Y.H. and H.B.; and preparation, review, or approval of the manuscript: R.H., M.J., T.S., N.H., M.T., M.H., Y.H., H.B. and T.M. We had no statistical consultation or assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Bujo.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the institutional review board of Toho University Sakura Medical Center (No.S16036) and with the 1964 Helsinki Declaration. Informed consent was obtained from all individual participants included in the study.

Funding

This study was supported, in part, by Grants-in–aid for Scientific Research to Hideaki Bujo (24390231 and 15 K15198) and Meizi Jiang (24790907), and by a supported program for the Strategic Research Foundation at Private Universities (S1411015) from Japanese Ministry of Education, Culture, Sports, Science and Technology. This study was also supported by Japan Health and Labour Sciences Research Grant to Hideaki Bujo (H22-rinkensui-ippan-001), and by the Toho University Research Fund to Ryuya Hashimoto.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speaker’s bureaus; membership, employment, consultancies, stock ownership).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, R., Jiang, M., Shiba, T. et al. Soluble form of LR11 is highly increased in the vitreous fluids of patients with idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 255, 885–891 (2017). https://doi.org/10.1007/s00417-017-3585-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3585-1

Keywords

Navigation