Skip to main content

Advertisement

Log in

A biomimetic collagen/heparin multi-layered porous hydroxyapatite orbital implant for in vivo vascularization studies on the chicken chorioallantoic membrane

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The vascularization of an orbital implant is a key issue for reducing complications, such as exposure and infection.

Methods

Here, we developed a facile layer-by-layer assembly approach to modify porous hydroxyapatite (pHA) orbital implants with five collagen (COL)/heparin (HEP) multilayers.

Results

SEM characterization showed that the average pore size of the pHA/(COL/HEP)5 scaffold was 316.8 ± 77.1 μm. After being coated with five COL/HEP multilayers, the mechanical strength was improved compared with that of the pHA scaffolds. The in vitro assay displayed that the pHA scaffolds covered with COL/HEP multilayers resulted in a larger number of human umbilical vein endothelial cells after being cultured for 14 days. The macroscopic evaluation and semi-quantitative vascular density analysis of the chicken chorioallantoic membrane assay showed that the pHA/(COL/HEP)5 scaffolds resulted in more intense angiogenesis than the pHA scaffolds.

Conclusions

These studies demonstrate that the biomembrane-mimicking coating of COL/HEP multilayers is a simple and effective strategy to endow combined biological performances of pHA orbital implants and to potentially reduce implant-related complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thaller VT (1997) Enucleation volume measurement. Ophthal Plast Reconstr Surg 13(1):18–20

    Article  PubMed  CAS  Google Scholar 

  2. Mourits DL, Hartong DT, Bosscha MI, Kloos RJ, Moll AC (2015) Worldwide enucleation techniques and materials for treatment of retinoblastoma: an international survey. PLoS One 10(3), e0121292. doi:10.1371/journal.pone.0121292

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baino F, Perero S, Ferraris S, Miola M, Balagna C, Verne E, Vitale-Brovarone C, Coggiola A, Dolcino D, Ferraris M (2014) Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater 10(3):1064–1087. doi:10.1016/j.actbio.2013.12.014

    Article  PubMed  CAS  Google Scholar 

  4. Sami D, Young S, Petersen R (2007) Perspective on orbital enucleation implants. Surv Ophthalmol 52(3):244–265. doi:10.1016/j.survophthal.2007.02.007

    Article  PubMed  Google Scholar 

  5. Perry AC (1990) Integrated orbital implants. Adv Ophthalmic Plast Reconstr Surg 8:75–81

    PubMed  CAS  Google Scholar 

  6. Hornblass A, Biesman BS, Eviatar JA (1995) Current techniques of enucleation: a survey of 5,439 intraorbital implants and a review of the literature. Ophthal Plast Reconstr Surg 11(2):77–88

  7. Custer PL, Trinkaus KM (2007) Porous implant exposure: incidence, management, and morbidity. Ophthal Plast Reconstr Surg 23(1):1–7. doi:10.1097/01.iop.0000249432.18688.ee

    Article  PubMed  Google Scholar 

  8. Remulla HD, Rubin PA, Shore JW, Sutula FC, Townsend DJ, Woog JJ, Jahrling KV (1995) Complications of porous spherical orbital implants. Ophthalmology 102(4):586–593

    Article  PubMed  CAS  Google Scholar 

  9. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15(3):353–370. doi:10.1089/ten.TEB.2009.0085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Gong Y, Zhu Y, Liu Y, Ma Z, Gao C, Shen J (2007) Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(L-lactic acid) porous scaffolds to enhance their chondrogenesis. Acta Biomater 3(5):677–685. doi:10.1016/j.actbio.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  11. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  CAS  Google Scholar 

  12. Sato M, Ishihara M, Ishihara M, Kaneshiro N, Mitani G, Nagai T, Kutsuna T, Asazuma T, Kikuchi M, Mochida J (2007) Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 83(1):181–188. doi:10.1002/jbm.b.30782

    Article  PubMed  Google Scholar 

  13. Jayson GC, Gallagher JT (1997) Heparin oligosaccharides: inhibitors of the biological activity of bFGF on Caco-2 cells. Br J Cancer 75(1):9–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Soker S, Goldstaub D, Svahn CM, Vlodavsky I, Levi BZ, Neufeld G (1994) Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors. Biochem Biophys Res Commun 203(2):1339–1347. doi:10.1006/bbrc.1994.2329

    Article  PubMed  CAS  Google Scholar 

  15. Lu S, Zhang P, Sun X, Gong F, Yang S, Shen L, Huang Z, Wang C (2013) Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl Mater Interfaces 5(15):7360–7369. doi:10.1021/am401706w

    Article  PubMed  CAS  Google Scholar 

  16. Liu X, Wang X, Horii A, Wang X, Qiao L, Zhang S, Cui FZ (2012) In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4(8):2720–2727. doi:10.1039/c2nr00001f

    Article  PubMed  CAS  Google Scholar 

  17. Zhang K, Li JA, Deng K, Liu T, Chen JY, Huang N (2013) The endothelialization and hemocompatibility of the functional multilayer on titanium surface constructed with type IV collagen and heparin. Colloids Surf B: Biointerfaces 108:295–304. doi:10.1016/j.colsurfb.2012.12.053

    Article  PubMed  CAS  Google Scholar 

  18. Guda T, Walker JA, Singleton B, Hernandez J, Oh DS, Appleford MR, Ong JL, Wenke JC (2014) Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J Biomater Appl 28(7):1016–1027. doi:10.1177/0885328213491790

    Article  PubMed  Google Scholar 

  19. Kalwerisky K, Mihora L, Czyz CN, Foster JA, Holck DE (2013) Rate of vascularization and exposure of silicone-capped porous polyethylene spherical implants: an animal model. Ophthal Plast Reconstr Surg 29(5):350–356. doi:10.1097/IOP.0b013e318295f9c1

    Article  PubMed  Google Scholar 

  20. Kim HW, Knowles JC, Kim HE (2005) Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med 16(3):189–195. doi:10.1007/s10856-005-6679-y

    Article  PubMed  Google Scholar 

  21. Macarak EJ, Howard PS (1983) Adhesion of endothelial cells to extracellular matrix proteins. J Cell Physiol 116(1):76–86. doi:10.1002/jcp.1041160112

    Article  PubMed  CAS  Google Scholar 

  22. Nanda HS, Chen S, Zhang Q, Kawazoe N, Chen G (2014) Collagen scaffolds with controlled insulin release and controlled pore structure for cartilage tissue engineering. Biomed Res Int 2014:623805. doi:10.1155/2014/623805

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S (2012) Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33(26):6123–6131. doi:10.1016/j.biomaterials.2012.05.027

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49(1):32–40

    Article  PubMed  CAS  Google Scholar 

  25. Martinez-Madrid B, Donnez J, Van Eyck AS, Veiga-Lopez A, Dolmans MM, Van Langendonckt A (2009) Chick embryo chorioallantoic membrane (CAM) model: a useful tool to study short-term transplantation of cryopreserved human ovarian tissue. Fertil Steril 91(1):285–292. doi:10.1016/j.fertnstert.2007.11.026

    Article  PubMed  Google Scholar 

  26. Singh S, Wu BM, Dunn JC (2012) Delivery of VEGF using collagen-coated polycaprolactone scaffolds stimulates angiogenesis. J Biomed Mater Res A 100(3):720–727. doi:10.1002/jbm.a.34010

    Article  PubMed  PubMed Central  Google Scholar 

  27. Iruela-Arispe ML, Diglio CA, Sage EH (1991) Modulation of extracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro. Arterioscler Thromb 11(4):805–815

    Article  PubMed  CAS  Google Scholar 

  28. Mao Z, Ma L, Zhou J, Gao C, Shen J (2005) Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjug Chem 16(5):1316–1322. doi:10.1021/bc049755b

    Article  PubMed  CAS  Google Scholar 

  29. Yan Y, Bjonmalm M, Caruso F (2014) Assembly of Layer-by-Layer particles and their interactions with biological systems. Chem Mater 26(1):452–460. doi:10.1021/cm402126n

    Article  CAS  Google Scholar 

  30. Shen H, Hu X, Yang F, Bei J, Wang S (2011) Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds. Biomaterials 32(13):3404–3412. doi:10.1016/j.biomaterials.2011.01.037

    Article  PubMed  CAS  Google Scholar 

  31. Melchiorri AJ, Hibino N, Yi T, Lee YU, Sugiura T, Tara S, Shinoka T, Breuer C, Fisher JP (2015) Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts. Biomacromolecules 16(2):437–446. doi:10.1021/bm501853s

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National “Twelfth Five-Year” Plan for Science & Technology Support of China (2012BAI08B01), Zhejiang Provincial Program for Cultivation of High-Level Innovative Health Talents, The Specialized Key Science & Technology Foundation of Zhejiang Provincial S & T Department (No.2012C13023-2), Zhejiang Key Laboratory fund of China (2011E10006) and Zhejiang Key Innovation Team Project of China (No.2009R50039). We thank Dr. Shaoze Wang (Institute of Translational Medicine, Zhejiang University) for assisting in digital segmentation.

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria, educational grants, participation in speakers’ bureaus, membership, employment, consultancies, stock ownership, or other equity interest, expert testimony, or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyou Gao or Juan Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Ye, X., Li, S. et al. A biomimetic collagen/heparin multi-layered porous hydroxyapatite orbital implant for in vivo vascularization studies on the chicken chorioallantoic membrane. Graefes Arch Clin Exp Ophthalmol 254, 83–89 (2016). https://doi.org/10.1007/s00417-015-3144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3144-6

Keywords

Navigation