Skip to main content
Log in

Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research

  • Medical Ophthalmology
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera.

Methods

Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula \( WLR = \frac{VD - LD}{LD} \). Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible.

Results

The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension.

Conclusions

The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level are significantly associated with an increased WLR. The wall-to-lumen ratio measured by AO can be used to detect structural retinal microvascular alterations in an early stage of remodeling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lavy S, Melamed E, Cahane E, Carmon A (1973) Hypertension and diabetes as risk factors in stroke patients. Stroke 4:751–759

    Article  CAS  PubMed  Google Scholar 

  2. Mulvany MJ, Baumbach GL, Aalkjaer C et al (1996) Vascular remodeling. Hypertension 28:505–506

    CAS  PubMed  Google Scholar 

  3. Korsgaard N, Aalkjaer C, Heagerty AM, Izzard AS, Mulvany MJ (1993) Histology of subcutaneous small arteries from patients with essential hypertension. Hypertension 22:523–526

    Article  CAS  PubMed  Google Scholar 

  4. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ (1993) Small artery structure in hypertension: dual processes of remodeling and growth. Hypertension 21:391–397

    Article  CAS  PubMed  Google Scholar 

  5. Wong TY, Mitchell P (2004) Hypertensive retinopathy. N Engl J Med 351:2310–2317

    Article  CAS  PubMed  Google Scholar 

  6. Henderson AD, Bruce BB, Newman NJ, Biousse V (2011) Hypertension-related eye abnormalities and the risk of stroke. Rev Neurol Dis 8(1–2):1–9

    PubMed Central  PubMed  Google Scholar 

  7. Goto I, Katsuki S, Ikui H, Kimoto K, Mimatsu T (1975) Pathological studies on the intracerebral and retinal arteries in cerebrovascular and noncerebrovascular diseases. Stroke 6:263–269

    Article  CAS  PubMed  Google Scholar 

  8. Park JB, Schiffrin EL (2001) Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 19:921–930

    Article  CAS  PubMed  Google Scholar 

  9. De Ciuceis C, Porteri E, Rizzoni D, Rizzardi N, Paiardi S, Boari GE, Miclini M, Zani F, Muiesan ML, Donato F, Salvetti M, Castellano M, Tiberio GA, Giulini SM, Agabiti RE (2007) Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens 20:846–852

    Article  PubMed  Google Scholar 

  10. Dimmit SB, Eames SM, Gosling P, West JNW, Gibson JM, Littler WA (1989) Usefulness of ophthalmoscopy in mild to moderate hypertension. Lancet 1:1103–1106

    Article  Google Scholar 

  11. Cuspidi C, Meani S, Salerno M, Fusi V, Severgnini B, Valerio C et al (2004) Retinal microvascular changes and target organ damage in untreated essential hypertensives. J Hypertens 22:206–2102

    Google Scholar 

  12. Tanabe Y, Kawasaki R, Wang JJ, Wong TY, Mitchell P, Daimon M et al (2010) Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: the Funagata study. Microcirculation 17:94–102

    Article  PubMed  Google Scholar 

  13. Patton N, Tariq Aslam T, MacGillivray T, Alison Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206(4):319–348

    Article  PubMed Central  PubMed  Google Scholar 

  14. Baleanu D, Ritt M, Harazny J, Heckmann J, Schmieder RE, Michelson G (2009) Wall-to-lumen ratio of retinal arterioles and arteriole-to-venule ratio of retinal vessels in patients with cerebrovascular damage. Invest Ophthalmol Vis Sci 50(9):4351–4359

    Article  PubMed  Google Scholar 

  15. Ritt M, Schmieder RE (2009) Wall – to – lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension 54:384–387

    Article  CAS  PubMed  Google Scholar 

  16. Lehmann MV, Schmieder RE (2011) Remodeling of retinal small arteries in hypertension. Am J Hypertens 24(12):1267–1273

    Article  PubMed  Google Scholar 

  17. Michelson G, Groh M, Groh MJ et al (2005) Telemedical-supported screening of retinal vessels (“talking eyes”). Klin Monatsbl Augenheilkd 222:319–325

    Article  CAS  PubMed  Google Scholar 

  18. Parr JC, Spears GF (1974) General caliber of the retinal arteries expressed as the equivalent width of the central retinal artery. Am J Ophthalmol 77:472–477

    Article  CAS  PubMed  Google Scholar 

  19. Parr JC, Spears GF (1974) Mathematic relationships between the width of a retinal artery and the widths of its branches. Am J Ophthalmol 77:478–483

    Article  CAS  PubMed  Google Scholar 

  20. Hubbard LD, Brothers RJ, King WN et al (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106:2269–2280

    Article  CAS  PubMed  Google Scholar 

  21. Schmieder RE (2008) Hypertensive retinopathy: a window to vascular remodeling in arterial hypertension. Hypertension 51(1):43–44, Epub 2007 Nov12

  22. http://www.imagine-eyes.com/product/rtx1/ . Accessed 22 Apr 2015

  23. Sahin B, Lamory B, Levecq X, Harms F, Dainty C (2012) Adaptive optics with pupil tracking for high resolution imaging. Biomed Opt Express 3(2):225–239

    Article  PubMed Central  PubMed  Google Scholar 

  24. Roorda A, Romero-Borja F, Donnelly W 3rd, Queener H, Hebert T, Campbell M (2002) Adaptive optics scanning laser ophtalmoscopy. Opt Express 10:405–412

    Article  PubMed  Google Scholar 

  25. Koch E, Rosenbaum D, Brolly A, Sahel JA, Chaumet-Riffaud P, Girerd X, Rossant F, Paques M (2014) Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens 32(4):890–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Imagine Eyes (2014) rtx1 Adaptive Optics Retinal Camera: The imaging microscope for the living retina http://www.imagine-eyes.com/wp-content/uploads/2014/06/M-DCP-016-e-rtx1.pdf . Accessed 22 Apr 2015

  27. Godara P, Dubis AM, Roorda A, Duncan JL, Carroll J (2010) Adaptive optics retinal imaging: emerging clinical applications. Optom Vis Sci 87(12):930–941

    Article  PubMed Central  PubMed  Google Scholar 

  28. Miller DT, Williams DR, Morris GM, Liang J (1996) Images of cone photoreceptors in the living human eye. Vision Res 36:1067–1079

    Article  CAS  PubMed  Google Scholar 

  29. Carroll J, Coi SS, Williams DR (2008) In vivo imaging of the photoreceptor mosaic of a rod monochromat. Vision Res 48:2564–2568

    Article  PubMed Central  PubMed  Google Scholar 

  30. Roorda A, Zhang Y, Duncan JL (2007) High resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 48:2297–2303

    Article  PubMed  Google Scholar 

  31. Tam J, Martin JA, Roorda A (2010) Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci 51:1691–1698

    Article  PubMed Central  PubMed  Google Scholar 

  32. Arichika S, Uji A, Ooto S, Miyamoto K, Yoshimura N (2014) Adaptive optics-assisted identification of preferential erythrocyte aggregate pathways in the human retinal microvasculature. PLoS ONE 9(2):e89679

    Article  PubMed Central  PubMed  Google Scholar 

  33. Burns SA, Elsner AE, Chui TY, Vannasdale DA Jr, Clark CA, Gast TJ, Malinovsky VE, Phan AD (2014) In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express 5(3):961–974

    Article  PubMed Central  PubMed  Google Scholar 

  34. Baumbach GL, Heistad DD (1989) Remodeling of cerebral arterioles in chronic hypertension. Hypertension 13:968–972

    Article  CAS  PubMed  Google Scholar 

  35. Michelson G, Wärntges S, Baleanu D, Welzenbach J, Ohno–Jinno A, Pogorelov P, Harazny J (2007) Morphometric age-related evaluation of small retina vessels by scanning laser doppler flowmetry. Determination of a vessel wall index. Retina 27(4):490–498

    Article  PubMed  Google Scholar 

  36. Ritt M, Harazny JM, Ott C, Schlaich MP, Schneider MP, Michelson G, Schmieder RE (2008) Analysis of retinal arteriolar strucuture in never-treated patients with essential hypertension. J Hypertens 26(7):1427–1434

    Article  CAS  PubMed  Google Scholar 

  37. Harazny JM, Ritt M, Baleanu D, Ott C, Heckmann J, Schlaich MP, Michelson G, Schmieder RE (2007) Increased wall:lumen ratio of retinal arteriols in male patients with a history of a cerebrovascular event. Hypertension 50:623–629

    Article  CAS  PubMed  Google Scholar 

  38. Faraco G, Iadecola C (2013) Hypertension: a harbinger of stroke and dementia. Hypertension 62:810–817

    Article  CAS  PubMed  Google Scholar 

  39. Wong TY, Klein R, Sharrett AR, Manolio TA, Hubbard LD, Marino EK, Kuller L, Burke G, Tracy RP, Polak JF, Gottdiener JS, Siscovick DS (2003) The prevalence and risk factors of retinal microvascular abnormalities in older persons: the cardiovascular health study. Ophthalmology 110(4):658–666

    Article  PubMed  Google Scholar 

  40. Wong TY, Klein R, Couper DJ, Cooper LS, Shahar E, Hubbard LD, Wofford MR, Sharrett AR (2001) Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study. Lancet 358(9288):1134–1140

    Article  CAS  PubMed  Google Scholar 

  41. Wong TY, Duncan BB, Golden SH, Klein R, Couper DJ, Klein BEK, Hubbard LD, Sharrett AR, Schmidt MI (2004) Associations between the metabolic syndrome and retinal microvascular signs: the atherosclerosis risk in communities study. Invest Ophthalmol Vis Sci 2949–2954

  42. Rizzoni D, Porteri E, Duse S, De Ciuceis C, Ca R, La Boria E et al (2012) Relationship between media-to-lumen ratio of subcutaneous small arteries and wall-to-lumen ratio of retinal arterioles evaluated non-invasively by scanning laser Doppler flowmetry. J Hypertens 30:1169–1175

    Article  CAS  PubMed  Google Scholar 

  43. Thom S, Stettler C, Stanton A, Witt N, Tapp R, Chaturvedi et al (2009) Differential effects of antihypertensive treatment on the retinal microcirculation: an anglo-scandinavian cardiac outcomes trial substudy. Hypertension 54:405–408

    Article  CAS  PubMed  Google Scholar 

  44. Hughes AD, Stanton AV, Jabbar AS, Chapman N, Martinez-Perez ME, Thom SA (2008) Effect of antihypertensive treatment on retinal microvascular changes in hypertension. J Hypertens 26:1703–1707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was performed in fulfillment of the requirements for obtaining the degree “Dr. med.” from the Friedrich-Alexander-University Erlangen-Nürnberg (FAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Meixner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meixner, E., Michelson, G. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research. Graefes Arch Clin Exp Ophthalmol 253, 1985–1995 (2015). https://doi.org/10.1007/s00417-015-3115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3115-y

Keywords

Navigation