Skip to main content
Log in

Impact of photodynamic inactivation (PDI) using the photosensitizer chlorin e6 on viability, apoptosis, and proliferation of human corneal endothelial cells

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Photodynamic inactivation (PDI) may be a potential alternative in case of therapy-resistant infectious keratitis. PDI using the photosensitizer chlorin e6 (Ce6) with high photosensitizing efficacy offers a valuable option, also for keratitis. The purpose of our study was to determine the impact of PDI with the photosensitizer Ce6 on viability, apoptosis, and proliferation of human corneal endothelial cells (HCECs), in vitro.

Methods

Human corneal endothelial cell line was cultured in DMEM/Ham’s F12 medium supplemented with 5 % fetal calf serum. HCECs cultures underwent illumination using red (670 nm) light for 13 min following exposure to 50–500 nM concentrations of Ce6 in the culture medium. Twenty-four hours after PDI, cell viability was evaluated by the Alamar blue assay, total DNA content of the cells and apoptosis using the APO-DIRECT™ Kit, and cell proliferation by the BrdU Cell Proliferation Assay Kit.

Results

Using Ce6 or illumination only, we did not detect significant changes of cell viability, apoptosis, and proliferation. Following PDI, viability and total DNA content of HCECs decreased significantly above 150 nM Ce6 concentration (P < 0.01; P < 0.05). The percentage of apoptotic HCECs increased significantly from 250 nM Ce6 concentration (P < 0.01), and proliferation of endothelial cells decreased significantly (P < 0.05) above 100 nM concentration of Ce6 after PDI.

Conclusions

Photodynamic inactivation using Ce6 decreases viability and proliferation, and also triggers apoptosis of HCECs in vitro. PDI using the photosensitizer Ce6 may be a potential treatment alternative in infectious keratitis. However, to avoid endothelial cell damage, the photosensitizer must not penetrate the endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L (2003) Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol 87:834–838

    Article  PubMed  CAS  Google Scholar 

  2. Sueke H, Kaye S, Neal T, Murphy C, Hall A, Whittaker D, Tuft S, Parry C (2010) Minimum inhibitory concentrations of standard and novel antimicrobials for isolates from bacterial keratitis. Invest Ophthalmol Vis Sci 51:2519–2524

    Article  PubMed  Google Scholar 

  3. Kowalski RP, Pandya AN, Karenchak LM, Romanowski EG, Husted RC, Ritterband DC, Shah MK, Gordon YJ (2001) An in vitro resistance study of levofloxacin, ciprofloxacin, and ofloxacin using keratitis isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Ophthalmology 108:1826–1829

    Article  PubMed  CAS  Google Scholar 

  4. Garg P, Sharma S, Rao GN (1999) Ciprofloxacin-resistant Pseudomonas keratitis. Ophthalmology 106:1319–1323

    Article  PubMed  CAS  Google Scholar 

  5. Moshirfar M, Mirzaian G, Feiz V, Kang PC (2006) Fourth-generation fluoroquinolone-resistant bacterial keratitis after refractive surgery. J Cataract Refract Surg 32:515–518

    Article  PubMed  Google Scholar 

  6. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  7. Kostenich GA, Zhuravkin IN, Zhavrid EA (1994) Experimental grounds for using chlorin e6 in the photodynamic therapy of malignant tumors. J Photochem Photobiol B 22:211–217

    Article  PubMed  CAS  Google Scholar 

  8. Rovaldi CR, Pievsky A, Sole NA, Friden PM, Rothstein DM, Spacciapoli P (2000) Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens In vitro. Antimicrob Agents Chemother 44:3364–3367

    Article  PubMed  CAS  Google Scholar 

  9. Gad F, Zahra T, Francis KP, Hasan T, Hamblin MR (2004) Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci 3:451–458

    Article  PubMed  CAS  Google Scholar 

  10. Park JH, Moon YH, Bang IS, Kim YC, Kim SA, Ahn SG, Yoon JH (2010) Antimicrobial effect of photodynamic therapy using a highly pure chlorin e6. Lasers Med Sci 25:705–710

    Article  PubMed  Google Scholar 

  11. Szentmary N, Goebels S, Bischoff M, Seitz B (2012) Photodynamic therapy for infectious keratitis. Ophthalmologe 109:165–170

    Article  PubMed  CAS  Google Scholar 

  12. Millson CE, Wilson M, MacRobert AJ, Bown SG (1996) Ex-vivo treatment of gastric Helicobacter infection by photodynamic therapy. J Photochem Photobiol B 32:59–65

    Article  PubMed  CAS  Google Scholar 

  13. Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42:2595–2601

    PubMed  CAS  Google Scholar 

  14. Komerik N, Curnow A, MacRobert AJ, Hopper C, Speight PM, Wilson M (2002) Fluorescence biodistribution and photosensitising activity of toluidine blue on rat buccal mucosa. Lasers Med Sci 17:86–92

    Article  PubMed  CAS  Google Scholar 

  15. Maurice DM (1972) The location of the fluid pump in the cornea. J Physiol 221:43–54

    PubMed  CAS  Google Scholar 

  16. Barfort P, Maurice D (1974) Electrical potential and fluid transport across the corneal endothelium. Exp Eye Res 19:11–19

    Article  PubMed  CAS  Google Scholar 

  17. Bourne WM (1998) Clinical estimation of corneal endothelial pump function. Trans Am Ophthalmol Soc 96:229–239, discussion 239–242

    PubMed  CAS  Google Scholar 

  18. Wollensak G, Mazzotta C, Kalinski T, Sel S (2011) Limbal and conjunctival epithelium after corneal cross-linking using riboflavin and UVA. Cornea 30:1448–1454

    Article  PubMed  Google Scholar 

  19. Cho KS, Lee EH, Choi JS, Joo CK (1999) Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 40:911–919

    PubMed  CAS  Google Scholar 

  20. Hovakimyan M, Guthoff RF, Stachs O (2012) Collagen cross-linking: current status and future directions. J Ophthalmol 2012:406850

    PubMed  Google Scholar 

  21. Saczko J, Mazurkiewicz M, Chwilkowska A, Kulbacka J, Kramer G, Lugowski M, Snietura M, Banas T (2007) Intracellular distribution of Photofrin in malignant and normal endothelial cell lines. Folia Biol (Praha) 53:7–12

    CAS  Google Scholar 

  22. Wawrzynska M, Kalas W, Bialy D, Ziolo E, Arkowski J, Mazurek W, Strzadala L (2010) In vitro photodynamic therapy with chlorin e6 leads to apoptosis of human vascular smooth muscle cells. Arch Immunol Ther Exp (Warsz) 58:67–75

    Article  CAS  Google Scholar 

  23. Simon C, Wolf G, Hüttenberger D, Foth H-J, Seitz B (2011) Penetration of the photosensitizer chlorin e6 into the cornea for photodynamic Inactivation in infectious keratitis. 109th DOG-Congress, Berlin, Germany

  24. Valtink M, Gruschwitz R, Funk RH, Engelmann K (2008) Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs 187:286–294

    Article  PubMed  Google Scholar 

  25. Wollensak G, Sporl E, Seiler T (2003) Treatment of keratoconus by collagen cross linking. Ophthalmologe 100:44–49

    Article  PubMed  CAS  Google Scholar 

  26. Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–627

    Article  PubMed  CAS  Google Scholar 

  27. Wollensak G, Sporl E, Reber F, Pillunat L, Funk R (2003) Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res 35:324–328

    Article  PubMed  CAS  Google Scholar 

  28. Wollensak G, Spoerl E, Wilsch M, Seiler T (2003) Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg 29:1786–1790

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the supports of the China Scholarship Council (CSC) for the author’s study (J Wang) and the Alexander von Humboldt Foundation for supporting the work of Dr. N. Szentmáry at the Department of Ophthalmology of Saarland University, Homburg/Saar, Germany. This project was also supported by “Zentrales Innovationsprogram Mittelstand (ZIM)” of the German Federal Ministry of Economics and Technology (Project number: KF2152004MD0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Stachon, T., Eppig, T. et al. Impact of photodynamic inactivation (PDI) using the photosensitizer chlorin e6 on viability, apoptosis, and proliferation of human corneal endothelial cells. Graefes Arch Clin Exp Ophthalmol 251, 1199–1204 (2013). https://doi.org/10.1007/s00417-012-2239-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2239-6

Keywords

Navigation