Skip to main content

Advertisement

Log in

Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To study the biomechanical effect of riboflavin-ultraviolet A irradiation (UVA)-induced collagen cross-linking (CXL) in porcine corneas using two different exposure times of 30 and 60 min.

Methods

Seventeen enucleated porcine eyes were divided into three groups: group A, six eyes without any treatment, group B, six eyes treated by UVA CXL for 30 min, and group C, five eyes treated by UVA CXL for 60 min. Riboflavin (vitamin B2) was used as a photosensitizer in both groups of treatment. Then, the stress-strain behavior of all the specimens was measured to compare the corneal biomechanical properties among the three groups. The Young’s modulus E of the mean curve of each group shows the stiffness of treated and untreated tissue. The stress data necessary for stretches of 6, 8, and 12% were used to perform the statistical analysis of the values.

Results

Group B (riboflavin-UVA-CXL, 30 min, E = 46 MPa) showed a stiffer behavior than group A (control, E = 29 MPa) . Group C (60 min CXL, E = 28 MPa) showed lower stiffness than group B and a similar mechanical behavior than group A. The statistical analysis of the stress–strain curves showed significant differences in the corneal response between group B and the control at the three values of stretch considered, 6, 8, and 12% (p = 0.025, p = 0.025 and p = 0.037, respectively) and between group B and group C (p = 0.028, p = 0.028, and p = 0.028). No statistically significant difference was found between group C and control (p = 0.855, p = 0.715, and p = 0.584).

Conclusions

The application of 30-min UVA CXL treatment with riboflavin increased stiffness of the porcine corneal tissue. A 60-min UVA-radiated tissue presents lower stiffness than the 30-min treated tissue, showing a similar biomechanical behavior than the untreated corneas. A prolongation of the UVA irradiation time may cause structural weakening of the porcine corneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-A-induced crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–627

    Article  PubMed  CAS  Google Scholar 

  2. Wollensak G (2006) Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol 17:356–360

    Article  PubMed  Google Scholar 

  3. Morén H, Malmsjö M, Mortensen J, Ohrström A (2010) Riboflavin and ultraviolet A collagen crosslinking of the cornea for the treatment of keratitis. Cornea 29(1):102–104

    Article  PubMed  Google Scholar 

  4. Krueger RR, Ramos-Esteban JC, Kanellopoulos AJ (2008) Staged intrastromal delivery of riboflavin with UVA cross-linking in advanced bullous keratopathy: laboratory investigation and first clinical case. J Refract Surg 24(7):S730–S736

    PubMed  Google Scholar 

  5. Spoerl E, Wollensak G, Seiler T (2004) Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res 29(1):35–40

    Article  PubMed  CAS  Google Scholar 

  6. Chan CCK, Sharma M, Boxer Wachler BS (2007) Effect of inferior-segment Intacs with and without C3-R on keratoconus. J Cataract Refract Surg 33:75–80

    Article  PubMed  Google Scholar 

  7. Hafezi F, Mrochen M, Iseli HP, Seiler T (2009) Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg 35:621–624

    Article  PubMed  Google Scholar 

  8. Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T (2007) Safety of UVA-riboflavin cross-linking of the cornea. Cornea 26(4):385–389

    Article  PubMed  Google Scholar 

  9. Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116(3):369–378

    Article  PubMed  Google Scholar 

  10. Wollensak G, Aurich H, Pham D-T, Wirbelauer C (2007) Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg 33:516–521

    Article  PubMed  Google Scholar 

  11. Spoerl E, Huhle M, Seiler T (1998) Induction of cross-links in corneal tissue. Exp Eye Res 66(1):97–103

    Article  PubMed  CAS  Google Scholar 

  12. Spoerl E, Seiler T (1999) Techniques for stiffening the cornea. J Refract Surg 15(6):711–713

    PubMed  CAS  Google Scholar 

  13. Wollensak G, Iomdina E (2009) Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol 87:48–51

    Article  PubMed  Google Scholar 

  14. Wollensak G, Spoerl E, Seiler T (2003) Stress–strain measurements of human and porcine corneas after riboflavin/ultraviolet- A-induced cross-linking. J Cataract Refract Surg 29:1780–1785

    Article  PubMed  Google Scholar 

  15. Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T (2007) Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg 33(12):2035–2040

    Article  PubMed  Google Scholar 

  16. Wollensak G, Iomdina E (2009) Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg 35:540–546

    Article  PubMed  Google Scholar 

  17. Schreiber J (2002) Verfestigung der Hornhaut durch UVA 365 nm + Riboflavin. Technical University Dresden, Doctoral Thesis

  18. Mark HF (1986) Encyclopedia of polymer science and engineering. Wiley, New York

    Google Scholar 

  19. Ahearne M, Yang Y, Then KY, Liu K-K (2008) Non-destructive mechanical characterisation of UVA/riboflavin crosslinked collagen hydrogels. Br J Ophthalmol 92:268–271

    Article  PubMed  CAS  Google Scholar 

  20. Kling S, Remon L, Pérez-Escudero A, Merayo-Lloves J, Marcos S (2010) Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci 51(8):3961–3968

    Article  PubMed  Google Scholar 

  21. Rama P, Di Matteo F, Matuska S, Paganoni G, Spinelli A (2009) Acanthamoeba keratitis with perforation after corneal crosslinking and bandage contact lens use. J Cataract Refract Surg 35:788–791

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Instituto de Salud Carlos III (ISCIII) through the CIBER initiative. Platform for Biological Tissue Characterization of the Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) and the research support of the Spanish Ministry of Education and Science through the research project DPI2008-02335.

Financial Disclosure

The authors have no financial interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lanchares.

Additional information

Grant

Spanish Ministry of Education and Science through the research project DPI2008-02335.

The authors have full control of all primary data and agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review data upon request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanchares, E., del Buey, M.A., Cristóbal, J.A. et al. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Graefes Arch Clin Exp Ophthalmol 249, 1223–1227 (2011). https://doi.org/10.1007/s00417-011-1674-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1674-0

Keywords

Navigation