, Volume 260, Issue 9, pp 2370-2379
Date: 18 Jun 2013

Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Previous studies demonstrated cognitive impairments in spinocerebellar ataxia type 3 (SCA3/MJD); however, there is no consensus about the cognitive domains affected and the correlation with structural brain abnormalities. We investigated the neuropsychological profile and 3T-MRI findings, including high-resolution T1-images, diffusion tensor imaging and magnetic resonance spectroscopy of 32 patients with SCA3/MJD and 32 age-, gender- and educational level–matched healthy controls. We reviewed patients’ clinical history and CAG repeat length, and performed assessment and rating of ataxia (SARA)-Brazilian version and the neuropsychiatric inventory. Patients presented worse performance in episodic and working memory and Beck inventories (depression and anxiety). SCA3/MJD patients had a reduction of gray matter volume (GM) in the cerebellum, putamen, cingulum, precentral and parietal lobe. A positive correlation was identified between the cognitive findings and GM of temporal, frontal, parietal, culmen and insula. We observed positive correlation between the brainstem′s fractional anisotropy and digit span-forward. The following cerebellar metabolite groups (measured relative to creatine) were reduced in patients: N-acetyl-aspartate (NAA), NAA + N-acetyl-aspartate-glutamate and glutamate + glutamine (Glx). We found a positive correlation between Corsi’s block-tapping task forward with Glx; semantic verbal fluency with phosphorylcholine and glycerophosphorylcholine; digits span-forward with NAA. The cognitive impairments in SCA3/MJD are associated not only with cerebellar and brainstem abnormalities, but also with neuroimaging evidence of diffuse neuronal and axonal dysfunction, particularly in temporal, frontal, parietal and insular areas.