Skip to main content

Advertisement

Log in

A novel mutation I215V in the PRNP gene associated with Creutzfeldt–Jakob and Alzheimer’s diseases in three patients with divergent clinical phenotypes

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Genetic human prion diseases are autosomal dominant disorders associated with different mutations in the PRNP gene that are manifested as distinct clinical phenotypes. Here, we report a new pathogenic missense mutation (c.[643A>G], p.[I215V]) in the PRNP gene associated with three pathologically confirmed cases: two of Creutzfeldt–Jakob disease (CJD) and one of Alzheimer’s disease (AD) in two different families from the same geographical region in Spain. This mutation has not been found in any of more than 2,000 control cases studied. It represents a conservative amino acid change, and the same change is observed in the PRNP gene from other species. The two CJD cases were homozygous at codon 129 (M/M), but showed divergent clinical phenotypes with onset at ages 55 and 77 years and illness durations of 15 and 6 months, respectively. The postmortem neuropathological analysis of these cases showed homogeneous features compatible with CJD. Interestingly, the AD case (a brother of one of the CJD cases) was heterozygous at codon 129 (M/V). No familiar history was documented for any of the cases, suggesting a de novo mutation, or a partial, age-dependent penetration of the mutation, perhaps related to codon 129 status. This new mutation extends the list of known pathogenic mutations responsible for genetic CJD, reinforces the clinical heterogeneity of the disease, and advocates for the inclusion of PRNP gene examination in the diagnostic workup of patients with poorly classifiable dementia, even in the absence of family history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CJD:

Creutzfeldt–Jakob disease

AD:

Alzheimer’s disease

TSE:

Transmissible spongiform encephalopathies

GSS:

Gerstmann–Sträussler–Scheinker syndrome

FFI:

Fatal familial insomnia

References

  1. Prusiner SB (1996) Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci 21:482–487

    Article  PubMed  CAS  Google Scholar 

  2. Weissmann C (1996) The Ninth Datta Lecture. Molecular biology of transmissible spongiform encephalopathies. FEBS Lett 389:3–11

    Article  PubMed  CAS  Google Scholar 

  3. DeArmond SJ, Prusiner SB (2003) Perspectives on prion biology, prion disease pathogenesis, and pharmacologic approaches to treatment. Clin Lab Med 23:1–41

    Article  PubMed  Google Scholar 

  4. Wadsworth JD, Hill AF, Beck JA et al (2003) Molecular and clinical classification of human prion disease. Br Med Bull 66:241–254

    Article  PubMed  CAS  Google Scholar 

  5. Wadsworth JD, Collinge J (2011) Molecular pathology of human prion disease. Acta Neuropathol 121:69–77

    Article  PubMed  CAS  Google Scholar 

  6. Mead S (2006) Prion disease genetics. Eur J Hum Genet 14:273–281

    Article  PubMed  CAS  Google Scholar 

  7. Mastrianni JA (2010) The genetics of prion diseases. Genet Med 12:187–195

    Article  PubMed  CAS  Google Scholar 

  8. Lloyd S, Mead S, Collinge J (2011) Genetics of prion disease. Top Curr Chem 305:1–22

    Article  PubMed  CAS  Google Scholar 

  9. Pan KM, Baldwin M, Nguyen J et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966

    Article  PubMed  CAS  Google Scholar 

  10. Riek R, Hornemann S, Wider G et al (1996) NMR structure of the mouse prion protein domain PrP (121–231). Nature 382:180–182

    Article  PubMed  CAS  Google Scholar 

  11. Zahn R, Liu A, Lührs T et al (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97:145–150

    Article  PubMed  CAS  Google Scholar 

  12. Christen B, Hornemann S, Damberger FF et al (2009) Prion protein NMR structure from tammar wallaby (Macropus eugenii) shows that the beta2-alpha2 loop is modulated by long-range sequence effects. J Mol Biol 389:833–845

    Article  PubMed  CAS  Google Scholar 

  13. Christen B, Pérez DR, Hornemann S et al (2008) NMR structure of the bank vole prion protein at 20 degrees C contains a structured loop of residues 165–171. J Mol Biol 383:306–312

    Article  PubMed  CAS  Google Scholar 

  14. López Garcia F, Zahn R, Riek R et al (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci USA 97:8334–8339

    Article  PubMed  Google Scholar 

  15. Gossert AD, Bonjour S, Lysek DA et al (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci USA 102:646–650

    Article  PubMed  CAS  Google Scholar 

  16. Yoshida H, Terada S, Ishizu H et al (2010) An autopsy case of Creutzfeldt-Jakob disease with a V180I mutation of the PrP gene and Alzheimer-type pathology. Neuropathology 30:159–164

    Article  PubMed  Google Scholar 

  17. Ghoshal N, Cali I, Perrin RJ et al (2009) Codistribution of amyloid beta plaques and spongiform degeneration in familial Creutzfeldt-Jakob disease with the E200K–129M haplotype. Arch Neurol 66:1240–1246

    Article  PubMed  Google Scholar 

  18. Jayadev S, Nochlin D, Poorkaj P et al (2011) Familial prion disease with Alzheimer disease-like tau pathology and clinical phenotype. Ann Neurol 69:712–720

    Article  PubMed  CAS  Google Scholar 

  19. Heinemann U, Krasnianski A, Meissner B et al (2008) Novel PRNP mutation in a patient with a slow progressive dementia syndrome. Med Sci Monit 14:CS41–CS43

    PubMed  CAS  Google Scholar 

  20. Kumar N, Boeve BF, Boot BP et al (2011) Clinical characterization of a kindred with a novel 12-octapeptide repeat insertion in the prion protein gene. Arch Neurol 68:1165–1170

    Article  PubMed  Google Scholar 

  21. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487

    Article  PubMed  CAS  Google Scholar 

  22. Calero O, Hortigüela R, Albo C et al (2009) Allelic discrimination of genetic human prion diseases by real-time PCR genotyping. Prion 3:146–150

    Article  PubMed  Google Scholar 

  23. Mead S, Mahal SP, Beck J et al (2001) Sporadic—but not variant—Creutzfeldt-Jakob disease is associated with polymorphisms upstream of PRNP exon 1. Am J Hum Genet 69:1225–1235

    Article  PubMed  CAS  Google Scholar 

  24. Calero O, Hortigüela R, Bullido MJ et al (2009) Apolipoprotein E genotyping method by real time PCR, a fast and cost-effective alternative to the TaqMan and FRET assays. J Neurosci Methods 183:238–240

    Article  PubMed  CAS  Google Scholar 

  25. Cuadrado-Corrales N, Jiménez-Huete A, Albo C et al (2006) Impact of the clinical context on the 14-3-3 test for the diagnosis of sporadic CJD. BMC Neurol 6:25

    Article  PubMed  Google Scholar 

  26. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  27. Goujon M, McWilliam H, Li W et al (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W6999 (web service issue)

    Article  PubMed  CAS  Google Scholar 

  28. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  29. Goldman JS, Miller BL, Safar J et al (2004) When sporadic disease is not sporadic: the potential for genetic etiology. Arch Neurol 61:213–216

    Article  PubMed  Google Scholar 

  30. Kovács GG, Puopolo M, Ladogana A et al (2005) EUROCJD. Genetic prion disease: the EUROCJD experience. Hum Genet 118:166–174

    Article  PubMed  Google Scholar 

  31. Goldfarb LG, Petersen RB, Tabaton M et al (1992) Fatal familial insomnia and familial Creutzfeldt–Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258:806–808

    Article  PubMed  CAS  Google Scholar 

  32. Brown P, Goldfarb LG, Kovanen J et al (1992) Phenotypic characteristics of familial Creutzfeldt–Jakob disease associated with the codon 178Asn PRNP mutation. Ann Neurol 31:282–285

    Article  PubMed  CAS  Google Scholar 

  33. Mitrová E, Belay G (2002) Creutzfeldt-Jakob disease with E200K mutation in Slovakia: characterization and development. Acta Virol 46:31–39

    PubMed  Google Scholar 

  34. Jarius C, Kovacs GG, Belay G et al (2003) Distinctive cerebellar immunoreactivity for the prion protein in familial (E200K) Creutzfeldt–Jakob disease. Acta Neuropathol 105:449–454

    PubMed  CAS  Google Scholar 

  35. Gambetti P, Kong Q, Zou W et al (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239

    Article  PubMed  CAS  Google Scholar 

  36. Vollmert C, Windl O, Xiang W, Rosenberger A, Zerr I, Wichmann HE, Bickeböller H, Illig T, KORA group, Kretzschmar HA (2006) Significant association of a M129V independent polymorphism in the 5′ UTR of the PRNP gene with sporadic Creutzfeldt–Jakob disease in a large German case-control study. J Med Genet 43:e53

    Article  PubMed  CAS  Google Scholar 

  37. Kovács GG, Trabattoni G, Hainfellner JA et al (2002) Mutations of the prion protein gene phenotypic spectrum. J Neurol 249:1567–1582

    Article  PubMed  Google Scholar 

  38. Swietnicki W, Petersen RB, Gambetti P et al (1998) Familial mutations and the thermodynamic stability of the recombinant human prion protein. J Biol Chem 273:31048–31052

    Article  PubMed  CAS  Google Scholar 

  39. Rossetti G, Giachin G, Legname G et al (2010) Structural facets of disease-linked human prion protein mutants: a molecular dynamic study. Proteins 78:3270–3280

    Article  PubMed  CAS  Google Scholar 

  40. Shen L, Ji HF (2011) Mutation directional selection sheds light on prion pathogenesis. Biochem Biophys Res Commun 410:159–163

    Article  PubMed  CAS  Google Scholar 

  41. Meli M, Gasset M, Colombo G (2011) Dynamic diagnosis of familial prion diseases supports the β2-α2 loop as a universal interference target. PLoS One 6:e19093

    Article  PubMed  CAS  Google Scholar 

  42. Xu Z, Prigent S, Deslys JP et al (2011) Dual conformation of H2H3 domain of prion protein in mammalian cells. J Biol Chem 286:40060–40068

    Article  PubMed  CAS  Google Scholar 

  43. Agrimi U, Nonno R, Dell’Omo G et al (2008) Prion protein amino acid determinants of differential susceptibility and molecular feature of prion strains in mice and voles. PLoS Pathog 4:e1000113

    Article  PubMed  Google Scholar 

  44. Eghiaian F, Daubenfeld T, Quenet Y et al (2007) Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage. Proc Natl Acad Sci USA 104:7414–7419

    Article  PubMed  CAS  Google Scholar 

  45. Gambetti P, Dong Z, Yuan J et al (2008) A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol 63:697–708

    Article  PubMed  CAS  Google Scholar 

  46. Zou WQ, Puoti G, Xiao X et al (2010) Variably protease-sensitive prionopathy: a new sporadic disease of the prion protein. Ann Neurol 68:162–172

    Article  PubMed  CAS  Google Scholar 

  47. Beeri MS, Rapp M, Silverman JM et al (2006) Coronary artery disease is associated with Alzheimer disease neuropathology in APOE4 carriers. Neurology 66:1399–1404

    Article  PubMed  CAS  Google Scholar 

  48. Mahillo-Fernandez I, de Pedro-Cuesta J, Bleda MJ et al (2008) Surgery and risk of sporadic Creutzfeldt–Jakob disease in Denmark and Sweden: registry-based case-control studies. Neuroepidemiology 31:229–240

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the personnel from the Anatomic Pathology department of Hospital Clínico Universitario de Zaragoza (Zaragoza, Spain) for their assistance in the implementation of the autopsy of the three cases reported here, according to established protocols. We also thank all the physicians and epidemiological and clinical coordinators for their assistance and for notifying cases to the CJD Spanish Registry, as well as to F. Avellanal, J. Almazán, M. Ruiz, and E. Alcalde for their collaboration with the Spanish CJD surveillance system. This work was supported by grants FIS 05/0912 and PI11/03021 from the Acción Estratégica en Salud (Instituto de Salud Carlos III, Ministerio de Economía y Competitividad), the DGSP of the Spanish National Health Ministry (MC), and the Spanish CIBERNED network (JdP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Calero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Nieto, M., Ramonet, N., López-Gastón, J.I. et al. A novel mutation I215V in the PRNP gene associated with Creutzfeldt–Jakob and Alzheimer’s diseases in three patients with divergent clinical phenotypes. J Neurol 260, 77–84 (2013). https://doi.org/10.1007/s00415-012-6588-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6588-1

Keywords

Navigation