Skip to main content
Log in

Virtual CT morphometry of lower limb long bones for estimation of the sex and stature using postmortem Japanese adult data in forensic identification

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The application of computed tomography (CT) is useful for the documentation of whole-body anatomical data on routine autopsy, virtual reconstruction of skeletal structure, objective measurements, and reassessment by repetitive analyses. In addition, CT data processing facilitates volumetric and radiographic density analyses. Furthermore, a recently developed automated analysis system markedly improved the performance and accuracy of three-dimensional (3D) reconstruction. The present study investigated virtual CT morphometry of lower limb long bones, including the femur, tibia, fibula, and first metatarsus, to estimate the sex and stature using postmortem CT data of forensic autopsy cases of Japanese over 19 years of age (total n = 259, 150 males and 109 females). Bone mass volumes, lengths, and total CT attenuation values of bilateral femurs, tibias, and fibulas correlated with the stature; however, the mean CT attenuation (HU) values showed age-dependent decreases. Correlations with the stature were similar for the lengths and mass volumes of the femur, tibia, and fibula (r = 0.77–0.85) but were higher for the mass volume of the first metatarsus (r = 0.77 for right and r = 0.58 for left). In addition, the ratio of the bone volume to the length of each bone showed the most significant sex-related differences (males > females with accuracy of 75.8–98.1 %). These findings indicate the usefulness of virtual CT morphometry of individual lower limb long bones, including volumetry, to estimate the sex and stature in identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zeybek G, Ergur I, Demiroglu Z (2008) Stature and gender estimation using foot measurements. Forensic Sci Int 181:54. e1–5

    Article  PubMed  Google Scholar 

  2. Soni G, Dhall U, Chhabra S (2010) Determination of Sex from femur: discriminant analysis. J Anat Soc India 59:216–221

    Article  Google Scholar 

  3. Duyar I, Pelin C (2003) Body height estimation based on tibia length in different stature groups. Am J Phys Anthropol 122:23–27

    Article  PubMed  Google Scholar 

  4. Aldegheri R, Agostini S (1993) A chart of anthropometric values. J Bone Joint Surg Br 75:86–88

    CAS  PubMed  Google Scholar 

  5. Ozaslan A, Iscan MY, Ozaslan I, Tugcu H, Koc S (2003) Estimation of stature from body parts. Forensic Sci Int 132:40–45

    Article  PubMed  Google Scholar 

  6. Petrovečki V, Mayer D, Šlaus M, Strinović D, Škavić J (2007) Prediction of stature based on radiographic measurements of cadaver long bones: a study of the Croatian population. J Forensic Sci 52:547–552

    Article  PubMed  Google Scholar 

  7. Leopold D, Novotny V (1985) Sex determination from the skull and parts of the hip bone. Gegenbaurs Morphol Jahrb 131:277–285

    CAS  PubMed  Google Scholar 

  8. Hasegawa I, Uenishi K, Fukunaga T, Kimura R, Osawa M (2009) Stature estimation formulae from radiographically determined limb bone length in a modern Japanese population. Leg Med (Tokyo) 11:260–266

    Article  Google Scholar 

  9. Schmeling A, Olze A, Reisinger W, König M, Geserick G (2003) Statistical analysis and verification of forensic age estimation of living persons in the institute of legal medicine of the berlin university hospital charité. Leg Med (Tokyo) 5:S367–S371

    Article  Google Scholar 

  10. Watanabe S, Terazawa K (2006) Age estimation from the degree of osteophyte formation of vertebral columns in Japanese. Leg Med (Tokyo) 8:156–160

    Article  Google Scholar 

  11. Tatarek NE, Sciulli PW (2007) Anthropological analysis of the lower extremity determining sex, race, and stature from skeletal elements. In: Rich J, Dean DE, Powers RH (eds) In: forensic medicine of the lower extremity: human identification and trauma analysis of the thigh, Leg, and foot. The Humana Press Inc., Totowa, NJ, p 71

    Google Scholar 

  12. Saini V, Srivastava R, Rai RK, Shamal SN, Singh TB, Tripathi SK (2012) Sex estimation from the mastoid process among north indians. J Forensic Sci 57:434–439

    Article  PubMed  Google Scholar 

  13. Scheuer L (2002) Application of osteology to forensic medicine. Clin Anatomy 15:297–312

    Article  Google Scholar 

  14. Rainio J, Lalu K, Ranta H, Penttilä A (2001) Radiology in forensic expert team operations. Leg Med (Tokyo) 3:34–43

    Article  CAS  Google Scholar 

  15. Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Hayakawa M, Yajima D, Inokuchi G, Motomura A, Chiba F, Iwase H (2014) Stature estimation in Japanese cadevers based on pelvic measurements in three-dimensional multidetector computed tomographic images. Int J Legal Med 16:181–186

  16. Jamaiyah H, Geeta A, Safiza MN, Khor GL, Wong NF, Kee CC, Rahmah R, Ahmad AZ, Suzana S, Chen WS, Rajaah M, Adam B (2010) Reliability, technical error of measurements and validity of length and weight measurements for children under two years old in Malaysia. Med J Malays 65:131–137

    Google Scholar 

  17. O’Donnell C, Iino M, Mansharan K, Leditscke J, Woodford N (2011) Contribution of postmortem multidetector CT scanning to identification of the deceased in a mass disaster: experience gained from the 2009 Victorian bushfires. Forensic Sci Int 205:15–28

    Article  PubMed  Google Scholar 

  18. Lorkiewicz-Muszyńska D, Kociemba W, Żaba C, Łabęcka M, Koralewska-Kordel M, Abreu-Głowacka M, Przystańska A (2013) The conclusive role of postmortem computed tomography (CT) of the skull and computer-assisted superimposition in identification of an unknown body. Int J Legal Med 127:653–660

    Article  PubMed Central  PubMed  Google Scholar 

  19. Giurazza F, Vescovo RD, Schena E, Battisti S, Cazzato RL, Grasso FR, Silvestri S, Denaro V, Zobel BB (2012) Determination of stature from skeletal and skull measurements by CT scan evaluation. Forensic Sci Int 222:398. e1-398.e9

    Article  PubMed  Google Scholar 

  20. Torimitsu S, Makino Y, Saitoh H, Ishii N, Hayakawa M, Yajima D, Inokuchi G, Motomura A, Chiba F, Iwase H (2014) Stature estimation in Japanese cadavers using the sacral and coccygeal length measured with multidetector computed tomography. Leg Med (Tokyo) 16:14–19

    Article  Google Scholar 

  21. Rodríguez S, González A, Simón A, Rodríguez-Calvo MS, Febrero-Bande M, Cordeiro C, Muñoz-Barús JI (2014) The use of computerized tomography in determining stature and sex from metatarsal bones. Leg Med (Tokyo) 16:252–257

    Article  Google Scholar 

  22. Zaher JF, El-Ameen NFM, Seedhom AE (2011) Stature estimation using anthropometric measurements from computed tomography of metacarpal bones among Egyptian population. Egypt J For Sci 1:103–108

    Google Scholar 

  23. Hishmat AM, Michiue T, Sogawa N, Oritani S, Ishikawa T, Hashem MA, Maeda H (2014) Efficacy of automated three-dimensional image reconstruction of the femur from postmortem computed tomography data in morphometry for victim identification. Leg Med (Tokyo) 16:114–117

    Article  Google Scholar 

  24. Ubelaker DH (1999) Sex, stature, and age. In: Human skeletal remains: excavation, analysis, interpretation. Third ed. Washington: Smithsonian Institution; p. 60-63

  25. Allbrook D (1961) The estimation of stature in British and East African males: based on tibial and ulnar bone lengths. J Forensic Med 8:15–28

    CAS  PubMed  Google Scholar 

  26. Yonhao W, Jiaying W, Bingcheng H (1979) Estimation of stature from long bones of Chinese male adults in south-west district. Acta Anat Sinica 10:1–6

    Google Scholar 

  27. Wilson RJ, Herrmann NP, Meadows LJ (2010) Evaluation of stature estimation from the database for forensic anthropology. J Forensic Sci 55:684–689

    Article  PubMed  Google Scholar 

  28. Taik MM, San MM (1972) Estimation of Burmese stature from long bones, Union Burma. J Life Sci 5:127–132

    Google Scholar 

  29. Dayal MR, Steyn M, Kuykendall KL (2008) Stature estimation from bones of South African whites. S Afr J Sci 104:124–128

    Google Scholar 

  30. Andou M (1923) Nihonjin (seijin) no shishikotsu no keisoku ni oite. Kokka igaku Zasshi (J Natl Med) 434:101–120 (in Japanese)

    Google Scholar 

  31. Fujii A (1960) On the relation of long bone lengths of limbs to stature. B Sch Phys Educ Juntendo Univ 3:49–61 (in Japanese with English abstract)

    Google Scholar 

  32. Yoshino M, Miyasaka S, Sato H, Seta S (1986) Estimation of stature from long bones based on somatometric analysis. Rep Natl Res Inst Police Sci Res Forensic Sci (Kashiwa) 39:201–207 (in Japanese with English abstract)

    Google Scholar 

  33. Jacob M, Avadhani R, Bindhu S (2013) Maximum femoral length and bicondylar width as a tool for sexual dimorphism. Indian J Res 2:185–186

    Google Scholar 

  34. http://3dimaging.fujimed.com/radiologist/

  35. Boykov YY, Jolly MP (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. Proc “Internation Conf Comput Vis” 1:105–112

    Google Scholar 

  36. Bello S, Andrews P (2006) The intrinsic pattern of preservation of human skeletons and its influence on the interpretation of funerary behaviours. In: Knüsel C, Gowland R (eds) The social archaeology of funerary remains. Oxbow Books, Oxford, pp 1–13

  37. Humphrey LT (1998) Growth patterns in the modern human skeleton. Am J Phys Anthropol 105:57–72

    Article  CAS  PubMed  Google Scholar 

  38. Black TK 3rd (1978) A new method for assessing the sex of fragmentary skeletal remains: femoral shaft circumference. Am J Phys Anthropol 48:227–232

    Article  PubMed  Google Scholar 

  39. Khosla S, Amin S, Orwoll E (2008) Osteoporosis in men. Endocr Rev 29:441–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Pandya A, Singel T, Akbari V, Dangar K, Tank K, Patel M (2011) Sexual dimorphism of maximum femoral length. Natl J Med Res 1:67–70

    Google Scholar 

  41. Vedapriya KA, Rajasree TK (2013) Determination of sex based on adult fibula. Int J Biol Med Res 4:3199–3209

    Google Scholar 

  42. Mountrakis C, Eliopoulos C, Koilias CG, Manolis SK (2010) Sex determination using metatarsal osteometrics from the Athens collection. Forensic Sci Int 200:178. e1–7

    Article  PubMed  Google Scholar 

  43. Krishan K, Kanchan T, Sharma A (2012) Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions. J Forensic Leg Med 19:211–214

    Article  PubMed  Google Scholar 

  44. Singh S, Nair SK, Anjankar V, Bankwar V, Satpathy DK, Malik Y (2013) Regression equation for estimation of femur length in central Indians from inter-trochanteric crest. J Indian Acad Forensic Med 35:0971–0973

    Google Scholar 

  45. Pureepatpong N, Sangiampongsa A, Lerdpipatworakul T, Sangvichien S (2012) Stature estimation of modern Thais from long bones: a cadaveric study. Siriraj Med 64:22–25

    Google Scholar 

  46. Bhavna NS (2009) Use of lower limb measurements in reconstructing stature among shia Muslims. Internet J Biol Anthropol 2:86–97

    Google Scholar 

  47. Cordeiro C, Munoz-Baru’ JI, Wasterlain S, Cunha E, Vieira DN (2009) Predicting adult stature from metatarsal length in a Portuguese population. Forensic Sci Int 193:131. e1–131.e4

    Article  PubMed  Google Scholar 

  48. Giles E, Vallandigham PH (1991) Height estimation from foot and shoeprint length. J Forensic Sci 36:1134–1151

    CAS  PubMed  Google Scholar 

  49. Stull KE, Tise ML, Ali Z, Fowler DR (2014) Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Sci Int 238:133–140

    Article  PubMed  Google Scholar 

  50. Trotter M, Gleser GC (1952) Estimation of stature from long bones of American whites and negroes. Am J Phys Anthropol 10:463–514

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomi Michiue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 119 kb)

ESM 2

(DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hishmat, A.M., Michiue, T., Sogawa, N. et al. Virtual CT morphometry of lower limb long bones for estimation of the sex and stature using postmortem Japanese adult data in forensic identification. Int J Legal Med 129, 1173–1182 (2015). https://doi.org/10.1007/s00414-015-1228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1228-9

Keywords

Navigation