Skip to main content
Log in

Chromosomal proteins in the spermatogenesis of Drosophila

  • Chromosoma Focus
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromatin constitution in the male germ line of Drosophila is discussed with respect to the substitution of somatic histones by protamines or other basic proteins. The specific properties of germ line chromatin include the initiation and completion of the spermatogenic pathway and the reprogramming of the genome for embryonic development. During meiotic prophase cell cycle-regulated H3 histones appear to a large extent to be substituted by the histone H3.3 replacement variant protein, which is generally found associated with transcriptionally active chromatin. Condensation of the chromosomes during meiosis and the subsequent compaction for packaging in the sperm head require suitable proteins, but the cell cycle-regulated histones are not available as their expression is limited to S-phase. It is, therefore, proposed that any basic protein with a limited range of sequence requirements may take over this packaging function. Suitable proteins may have evolved by divergence from histone variants not restricted in their expression to S-phase, similar to the testes-predominant histone H3.3A of Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad K, Henikoff S (2002a) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2002b) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci U S A 99 Suppl 4:16477–16484

    Article  PubMed  CAS  Google Scholar 

  • Allen MJ, Lee C, Lee JD (1993) Atomic force microscopy of mammalian sperm chromatin. Chromosoma 102:623–630

    Article  PubMed  CAS  Google Scholar 

  • Ausió J (1999) Histone H1 and evolution of sperm nuclear basic proteins. J Biol Chem 274:31115–31118

    Article  PubMed  Google Scholar 

  • Akhmanova AS, Bindels PC, Xu J, Miedema K, Kremer H, Hennig W (1995) Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome 38:586–600

    PubMed  CAS  Google Scholar 

  • Akhmanova A, Miedema K, Wang Y, van Bruggen M, Berden JH, Moudrianakis EN, Hennig W (1997a) The localization of histone H3.3 in germ line chromatin of Drosophila males as established with a histone H3.3-specific antiserum. Chromosoma 106:335–347

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Kremer H, Miedema K, Hennig W (1997b) Naturally occurring testis-specific histone H3 antisense transcripts in Drosophila. Mol Reprod Dev 48:413–420

    Article  PubMed  CAS  Google Scholar 

  • Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW (2002) Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A 99:8173–8178

    Article  PubMed  CAS  Google Scholar 

  • Bedford JM, Calvin HL (1974) The occurrence and possible functional significance of -S-S-crosslinks in sperm heads, with particular reference to eutherian mammals. J Exp Zool 188:137–155

    Article  PubMed  CAS  Google Scholar 

  • Blümer N, Schreiter K, Hempel L, Santel A, Hollmann M, Schäfer MA, Renkawitz-Pohl R (2002) A new translational repression element and unusual transcriptional control regulate expression of don juan during Drosophila spermatogenesis. Mech Dev 110:97–112

    Article  PubMed  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  PubMed  CAS  Google Scholar 

  • Eddy EM (2002) Male germ cell gene expression. Recent Prog Horn Res 57:103–128

    Article  CAS  Google Scholar 

  • Engel W, Keime S, Kremling H, Hameister H, Schlüter G (1992) The genes for protamine 1 and 2 (PRM1 and PRM2) and transition protein 2 (TNP2) are closely linked in the mammalian genome. Cytogenet Cell Genet 61:158–159

    Article  PubMed  CAS  Google Scholar 

  • Goday C, Ruiz MF (2002) Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J Cell Sci 115:4765–4775

    Article  PubMed  CAS  Google Scholar 

  • Hecht NB (1998) Molecular mechanisms of male germ cell differentiation. Bioassays 20:555–561

    Article  CAS  Google Scholar 

  • Hennig W (1967) Untersuchungen zur Struktur und Funktion des Lampenbürsten-Y-Chromosoms in der Spermatogenese von Drosophila. Chromosoma 22:294–357

    Article  PubMed  CAS  Google Scholar 

  • Hennig W (2001) DNA packaging in sperm. In: Encyclopaedia of Life Sciences. Nature Publishing Group, London

    Google Scholar 

  • Hill CS, Rimmer JM, Green BN, Finch JT, Thomas JO (1991) Histone-DNA interactions and their modulation by phosphorylation of -Ser-Pro-Lys/Arg-motifs. EMBO J 10:1939–1948

    PubMed  CAS  Google Scholar 

  • Huijser P, Kirchhoff C, Lankenau DH, Hennig W (1988) Retrotransposon-like sequences are expressed in Y chromosomal lampbrush loops of Drosophila hydei. J Mol Biol 203:689–697

    Article  PubMed  CAS  Google Scholar 

  • Jamieson BGM (1987) The ultrastructure and phylogeny of insect spermatozoa. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jutglar L, Borerell JI, Ausió J (1991) Primary, secondary, and tertiary structure of the core of a histone H1-like protein from sperm of Mytilus. J Biol Chem 266:8184–8191

    PubMed  CAS  Google Scholar 

  • Kashiwabara S, Noguchi J, Zhuang T, Ohmura K, Honda A, Sugiura S, Miyamoto K, Takahashi S, Inoue K, Ogura A, Baba T (2002) Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 298:1999–2002

    Article  PubMed  CAS  Google Scholar 

  • Kettaneh NP, Hartl DL (1976) Histone transition during spermiogenesis is absent in segregation distorter males of Drosophila melanogaster. Sciencel 93:1020–1201

    Article  Google Scholar 

  • Kimura Y, Yanagimachi R (1995) Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 121:2397–2405

    PubMed  CAS  Google Scholar 

  • Kremer H, Hennig W, Dijkhof R (1986) Chromatin organization in the male germ line of Drosophila hydei. Chromosoma 94:147–161

    Article  Google Scholar 

  • Lankenau S, Corces VG, Lankenau DH (1994) The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase. Mol Cell Biol 14:1764–1775

    PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  PubMed  CAS  Google Scholar 

  • Maleszewski M, Kuretake S, Evenson D, Yanagimachi H, Bjordahl J, Yanagimachi R (1998) Behavior of transgenic mouse spermatozoa with galline protamine. Biol Reprod 58:8–14

    Article  PubMed  CAS  Google Scholar 

  • McPherson S, Longo FJ (1993) Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem 37:109–128

    PubMed  CAS  Google Scholar 

  • Meistrich M (1989) Histone and basic nuclear protein transition in mammalian spermatogenesis. In: Hnilica LS, Stein GS, Stein JL (eds) Histones and other basic nuclear proteins. CRC Press, Orlando, pp 165–182

    Google Scholar 

  • Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 40:25–94

    Article  PubMed  CAS  Google Scholar 

  • Pienta KJ, Coffey DS (1984) Structural analysis of the role of nuclear matrix and DNA loops in the organization of the nucleus and chromosome. J Cell Sci Suppl 1:123–135

    PubMed  CAS  Google Scholar 

  • Poccia DL, Green GR (1992) Packaging and unpackaging the sea urchin sperm genome. Trends Biochem Sci 17:223–227

    Article  PubMed  CAS  Google Scholar 

  • Rocchini C, Zhang F, Ausió J (1995) Two highly specialized histone H1 proteins are the major chromosomal proteins of the sperm of the sea anemone Urticina (Tealia) crassicornis. Biochemistry 34:15704–15712

    Article  PubMed  CAS  Google Scholar 

  • Roth SY, Allis CD (1992) Chromatin condensation: does histone H1 dephosphorylation play a role? Trend Biochem Sci 17:93–98

    Article  PubMed  CAS  Google Scholar 

  • Santi S, Rubbini S, Cinti C, et al (1994) Nuclear matrix involved in sperm head structural organization. Biol Cell 81:47–57

    Article  PubMed  CAS  Google Scholar 

  • van der Schans GP, Haring R, van Dijk-Knijnenburg HC, Bruijnzeel PL, den Daas NH (2000) An immunochemical assay to detect DNA damage in bovine sperm. J Androl 21:250–257

    PubMed  Google Scholar 

  • Waterborg JH (1993) Histone synthesis and turnover in alfalfa. Fast loss of highly acetylated replacement histone variant H3.2. J Biol Chem 268:4912–4917

    PubMed  CAS  Google Scholar 

  • Wouters-Tyrou D, Martinage A, Chevaillier P, Sautiere P (1998) Nuclear basic proteins in spermatogenesis. Biochimie 80:117–128

    Article  PubMed  CAS  Google Scholar 

  • Yelick PC, Kwon YH, Flynn JF, Borzorgzadeh A, Kleene KC, Hecht NB (1989) Mouse transition protein 1 is translationally regulated during the postmeiotic stages of spermatogenesis. Mol Reprod Dev 1:193–200

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hennig.

Additional information

This paper is dedicated to Guenther F. Meyer in memory of the many years of our cooperation

Published online: 28 March 2003

Guest Editor. J. Ausió

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennig, W. Chromosomal proteins in the spermatogenesis of Drosophila . Chromosoma 111, 489–494 (2003). https://doi.org/10.1007/s00412-003-0236-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0236-6

Keywords

Navigation