Skip to main content
Log in

Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahigh-pressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time–fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium ∆18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluid-assisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aleinikoff JN, Schenck WS, Plank MO, Srogi L, Fanning M, Kamo SL, Bosbyshell H (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol Soc Am Bull 118:39–64. doi:10.1130/B25659.1

  • Amato JM, Johnson CM, Baumgartner LP, Beard BL (1999) Rapid exhumation of the Zermatt–Saas ophiolite deduced from high-precision SmNd and RbSr geochronology. Earth Planet Sci Lett 171:425–438

    Article  Google Scholar 

  • Beltrando M, Rubatto D, Manatschal G (2010) From passive margins to orogens: the link between ocean-continent transition zones and (ultra) high-pressure metamorphism. Geology 38:559–562

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170. doi:10.1016/S0009-2541(03)00165-7

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206 Pb/238 U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140

    Article  Google Scholar 

  • Breecker DO, Sharp ZD (2007) A monazite oxygen isotope thermometer. Am Mineral 92:1561–1572

    Article  Google Scholar 

  • Carry N, Gueydan F, Marquer D, Brun JP (2011) HP–UHP metamorphism as an indicator of slab dip variations in the Alpine arc. Int J Earth Sci 100:1087–1094

    Article  Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the western alps—a 1st record and some consequences. Contrib Mineral Petrol 86:107–118. doi:10.1007/Bf00381838

    Article  Google Scholar 

  • Chopin C, Monié P (1984) A unique magnesiochloritoid-bearing, high-pressure assemblage from the Monte-Rosa, western alps—petrologic and Ar-40–Ar-39 radiometric study. Contrib Mineral Petrol 87:388–398. doi:10.1007/Bf00381295

    Article  Google Scholar 

  • Chopin C, Schertl HP (1999) The UHP unit in the Dora-Maira massif. Western Alps Int Geol Rev 41:765–780

    Article  Google Scholar 

  • Coggon R, Holland T (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696

    Article  Google Scholar 

  • Compagnoni R, Hirajima T (2001) Superzoned garnets in the coesite-bearing Brossasco-Isasca Unit, Dora-Maira massif, Western Alps, and the origin of the whiteschists. Lithos 57:219–236. doi:10.1016/S0024-4937(01)00041-X

    Article  Google Scholar 

  • Compagnoni R, Rolfo F, Groppo C, Hirajima T, Turello R (2012) Geological map of the ultra-high pressure Brossasco-Isasca unit (Western Alps, Italy). J Maps 8:465–472

    Article  Google Scholar 

  • de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016

    Article  Google Scholar 

  • Dragovic B, Samanta LM, Baxter EF, Selverstone J (2012) Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: an example from Sifnos, Greece. Chem Geol 314:9–22. doi:10.1016/j.chemgeo.2012.04.016

    Article  Google Scholar 

  • Duchêne S, Blichert-Toft J, Luais B, Télouk P, Lardeaux JM, Albarede F (1997) The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387:586–589

  • Eggins S, Kinsley L, Shelley J (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127:278–286

    Article  Google Scholar 

  • Ferrando S (2012) Mg-metasomatism of metagranitoids from the Alps: genesis and possible tectonic scenarios. Terra Nova 24:423–436

    Article  Google Scholar 

  • Ferrando S, Frezzotti ML, Petrelli M, Compagnoni R (2009) Metasomatism of continental crust during subduction: the UHP whiteschists from the Southern Dora-Maira Massif (Italian Western Alps). J Metamorph Geol 27:739–756. doi:10.1111/j.1525-1314.2009.00837.x

    Article  Google Scholar 

  • Ford M, Duchêne S, Gasquet D, Vanderhaeghe O (2006) Two-phase orogenic convergence in the external and internal SW Alps. J Geol Soc Lond 163:815–826

    Article  Google Scholar 

  • Franz L, Romer RL, de Capitani C (2013) Protoliths and phase petrology of whiteschists. Contrib Mineral Petrol 166:255–274

    Article  Google Scholar 

  • Frezzotti M, Selverstone J, Sharp Z, Compagnoni R (2011) Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci 4:703–706

    Article  Google Scholar 

  • Gebauer D, Schertl HP, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:5–24. doi:10.1016/S0024-4937(97)82002-6

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Gilotti J (2013) The realm of ultrahigh-pressure metamorphism. Elements 9:255–260. doi:10.2113/gselements.9.4.255

  • Grevel C, Schreyer W, Grevel KD, Schertl HP, Willner AP (2009) REE distribution, mobilization and fractionation in the coesite-bearing ‘pyrope quartzite’ and related rocks of the Dora-Maira Massif, Western Alps. Eur J Mineral 21:1213–1224. doi:10.1127/0935-1221/2009/0021-1967

    Article  Google Scholar 

  • Hermann J (2003) Experimental evidence for diamond-facies metamorphism in the Dora-Maira massif. Lithos 70:163–182. doi:10.1016/S0024-4937(03)00097-5

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852

    Article  Google Scholar 

  • Hermann J, Rubatto D (2014) 4.9—subduction of continental crust to mantle depth: geochemistry of ultrahigh-pressure rocks Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 309–340

  • Hermann J, Rubatto D, Korsakov A, Shatsky VS (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib Mineral Petrol 141:66–82

    Article  Google Scholar 

  • Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Hoskin PW, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Hu G, Clayton RN (2003) Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope geothermometers. Geochim Cosmochim Acta 67:3227–3246

    Article  Google Scholar 

  • Ickert R et al (2008) Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem Geol 257:114–128

    Article  Google Scholar 

  • Jeon H, Williams IS, Chappell BW (2012) Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet Sci Lett 319–320:104–117. doi:10.1016/j.epsl.2011.12.010

    Article  Google Scholar 

  • John T, Gussone N, Podladchikov YY, Bebout GE, Dohmen R, Halama R, Klemd R, Magna T, Seitz HM (2012) Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci 5:489–492

    Article  Google Scholar 

  • Kohn MJ (1993) Modeling of prograde mineral δ18O changes in metamorphic systems. Contrib Mineral Petrol 113:249–261

    Article  Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100:897–908

    Article  Google Scholar 

  • Kylander-Clark AR, Hacker BR, Mattinson CG (2012) Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett 321:115–120

    Article  Google Scholar 

  • Lackey JS, Valley JW, Hinke HJ (2006) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada batholith. Contrib Mineral Petrol 151:20–44

    Article  Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada batholith: the oxygen isotope record. J Petrol 49:1397–1426

    Article  Google Scholar 

  • Lapen TJ, Johnson CM, Baumgartner LP, Mahlen NJ, Beard BL, Amato JM (2003) Burial rates during prograde metamorphism of an ultra-high-pressure terrane: an example from Lago di Cignana, western Alps, Italy. Earth Planet Sci Lett 215:57–72

    Article  Google Scholar 

  • Liu F, Liou J (2011) Zircon as the best mineral for P-T–time history of UHP metamorphism: a review on mineral inclusions and U–Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J Asian Earth Sci 40:1–39

    Article  Google Scholar 

  • Ludwig K (2009) SQUID 2 (rev. 2.50): A user’s manual. Berkeley Geochronology Center Spec Pub 5, 104 p

  • Ludwig K (2012) User’s manual for Isoplot 3.75. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Spec Pub 5, 75 p

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16

    Article  Google Scholar 

  • Martin LA, Rubatto D, Vitale Brovarone A, Hermann J (2011) Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica. Lithos 125:620–640

    Article  Google Scholar 

  • Martin LA, Rubatto D, Crépisson C, Hermann J, Putlitz B, Vitale-Brovarone A (2014) Garnet oxygen analysis by SHRIMP-SI: matrix corrections and application to high-pressure metasomatic rocks from Alpine Corsica. Chem Geol 374:25–36

    Article  Google Scholar 

  • McCaig AM, Cliff RA, Escartin J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–938

    Article  Google Scholar 

  • Otamendi JE, Jesús D, Douce AEP, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162

    Article  Google Scholar 

  • Page F, Kita NT, Valley JW (2010) Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry. Chem Geol 270:9–19

    Article  Google Scholar 

  • Page FZ, Essene EJ, Mukasa SB, Valley JW (2014) A garnet-zircon oxygen isotope record of subduction and exhumation fluids from the Franciscan complex, California. J Petrol 55:103–131. doi:10.1093/petrology/egt062

    Article  Google Scholar 

  • Paquette JL, Montel JM, Chopin C (1999) U-Th-Pb dating of the Brossasco ultrahigh-pressure metagranite, Dora-Maira massif, western Alps. Eur J Mineral 11:69–77

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518

    Article  Google Scholar 

  • Philippot P, Chevalier P, Chopin C, Debussy J (1995) Fluid composition and evolution in coesite-bearing rocks (Dora-Maira massif, Western Alps): implications for element recycling during subduction. Contrib Mineral Petrol 121:29–44

    Article  Google Scholar 

  • Philippot P, Blichert-Toft J, Perchuk A, Costa S, Gerasimov V (2001) Lu–Hf and Ar–Ar chronometry supports extreme rate of subduction zone metamorphism deduced from geospeedometry. Tectonophysics 342:23–38

    Article  Google Scholar 

  • Pollington AD, Baxter EF (2010) High resolution Sm-Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes. Earth Planet Sci Lett 293:63–71. doi:10.1016/j.epsl.2010.02.019

    Article  Google Scholar 

  • Rizvanova N et al (2000) Zircon reaction and stability of the U–Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contrib Mineral Petrol 139:101–114

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138. doi:10.1016/S0009-2541(01)00355-2

    Article  Google Scholar 

  • Rubatto D, Angiboust S (2015) Oxygen isotope record of oceanic and high-pressure metasomatism: a P–T–time–fluid path for the Monviso eclogites (Italy). Contrib Mineral Petrol 170:44

    Article  Google Scholar 

  • Rubatto D, Hermann J (2001) Exhumation as fast as subduction? Geology 29:3–6

    Article  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187. doi:10.1016/S0016-7037(02)01321-2

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61. doi:10.1016/j.chemgeo.2007.01.027

  • Rubatto D, Muntener O, Barnhoorn A, Gregory C (2008) Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). Am Mineral 93:1519–1529. doi:10.2138/Am.2008.2874

    Article  Google Scholar 

  • Rubatto D, Putlitz B, Gauthiez-Putallaz L, Crépisson C, Buick IS, Zheng Y-F (2014) Measurement of in situ oxygen isotope ratios in monazite by SHRIMP ion microprobe: standards, protocols and implications. Chem Geol 380:84–96. doi:10.1016/j.chemgeo.2014.04.029

    Article  Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Schertl HP, Schreyer W (1996) Mineral inclusions in heavy minerals of the ultrahigh‐pressure metamorphic rocks of the Dora‐Maira Massif and their bearing on the relative timing of the petrological events. Earth process: reading the isotopic code. pp 331–342

  • Schertl HP, Schreyer W (2008) Geochemistry of coesite-bearing “pyrope quartzite” and related rocks from the Dora-Maira Massif, Western Alps. Eur J Mineral 20:791–809. doi:10.1127/0935-1221/2008/0020-1862

    Article  Google Scholar 

  • Schertl HP, Schreyer W, Chopin C (1991) The pyrope-coesite rocks and their country rocks at Parigi, Dora Maira Massif, Western Alps—detailed petrography, mineral chemistry and Pt-Path. Contrib Mineral Petrol 108:1–21. doi:10.1007/Bf00307322

    Article  Google Scholar 

  • Schmidt A, Mezger K, O’Brien PJ (2011) The time of eclogite formation in the ultrahigh pressure rocks of the Sulu terrane: constraints from Lu–Hf garnet geochronology. Lithos 125:743–756

    Article  Google Scholar 

  • Schreyer W (1973) Whiteschist: a high-pressure rock and its geologic significance. J Geol 81:735–739

  • Sharp Z, Barnes J (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226:243–254

    Article  Google Scholar 

  • Sharp ZD, Essene EJ, Hunziker JC (1993) Stable isotope geochemistry and phase equilibria of coesite-bearing whiteschists, Dora Maira Massif, western Alps. Contrib Mineral Petrol 114:1–12. doi:10.1007/bf00307861

    Article  Google Scholar 

  • Simon G, Chopin C, Schenk V (1997) Near-end-member magnesiochloritoid in prograde-zoned pyrope, Dora-Maira massif, western Alps. Lithos 41:37–57. doi:10.1016/S0024-4937(97)82004-X

    Article  Google Scholar 

  • Skora S, Mahlen NJ, Johnson CM, Baumgartner LP, Lapen TJ, Beard BL, Szilvagyi ET (2015) Evidence for protracted prograde metamorphism followed by rapid exhumation of the Zermatt-Saas Fee ophiolite. J Metamorph Geol 33:711–734

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Sun S-S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Special Publ 42:313–345

    Article  Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism, vol 1. Blackwell Science, Cambridge

    Google Scholar 

  • Tilton GR, Schreyer W, Schertl HP (1991) Pb–Sr–Nd isotopic behavior of deeply subducted crustal rocks from the Dora Maira Massif, Western Alps, Italy-Ii—what is the age of the ultrahigh-pressure metamorphism. Contrib Mineral Petrol 108:22–33. doi:10.1007/Bf00307323

    Article  Google Scholar 

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002

    Article  Google Scholar 

  • Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73:7110–7126

    Article  Google Scholar 

  • Vaggelli G, Borghi A, Cossio R, Fedi M, Giuntini L, Lombardo B, Marino A, Massi M, Olmi F, Petrelli M (2006) Micro-PIXE analysis of monazite from the Dora Maira massif, western Italian Alps. Microchim Acta 155:305–311

    Article  Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53:343–385

    Article  Google Scholar 

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim et Cosmochim Acta 59:5223–5231

  • Vielzeuf D, Champenois M, Valley JW, Brunet F, Devidal J (2005) SIMS analyses of oxygen isotopes: matrix effects in Fe–Mg–Ca garnets. Chem Geol 223:208–226

    Article  Google Scholar 

  • White R, Powell R, Clarke G (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Article  Google Scholar 

  • White R, Powell R, Holland T (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35

    Article  Google Scholar 

  • Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 31:331–343

    Google Scholar 

  • Zhang Z-M, Shen K, Sun W-D, Liu Y-S, Liou J, Shi C, Wang J-L (2008) Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim Cosmochim Acta 72:3200–3228

    Article  Google Scholar 

  • Zhang Z, Schertl HP, Wang J, Shen K, Liou J (2009) Source of coesite inclusions within inherited magmatic zircon from Sulu UHP rocks, eastern China, and their bearing for fluid–rock interaction and SHRIMP dating. J Metamorph Geol 27:317–333

    Article  Google Scholar 

  • Zheng Y-F (1993a) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Article  Google Scholar 

  • Zheng Y-F (1993b) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    Article  Google Scholar 

  • Zheng Y-F (2009) Fluid regime in continental subduction zones: petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc Lond 166:763–782

    Article  Google Scholar 

  • Zheng Y-F, Fu B, Gong B, Li L (2003) Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci Rev 62:105–161

    Article  Google Scholar 

Download references

Acknowledgments

This study benefited from the technical support of R Rapp for electron microprobe analysis. L Gauthiez-Putallaz acknowledges L Martin for providing SIMS garnet standard PrpDM. D Rubatto acknowledges the financial support of the Australia Research Council, DP110101599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Gauthiez-Putallaz.

Additional information

Communicated by Dr. Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gauthiez-Putallaz, L., Rubatto, D. & Hermann, J. Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis. Contrib Mineral Petrol 171, 15 (2016). https://doi.org/10.1007/s00410-015-1226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1226-4

Keywords

Navigation