Skip to main content
Log in

Extreme radium deficit in the 1957 AD Mugogo lava (Virunga volcanic field, Africa): its bearing on olivine-melilitite genesis

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report here U-series and trace element data for an olivine-melilitite lava flow, erupted in 1957 in the Virunga volcanic field and known as the Mugogo eruption. Petrological and geochemical data show that the Mugogo magma represents a primary mantle melt, derived from a low degree of melting of a metasomatised mantle source. It is highly enriched in very incompatible trace elements (e.g. more than 300-fold compared to primitive mantle for Th), with a distinctly lower enrichment in Rb, Ba and Sr. The high Th/U and low (230Th/232Th) ratios (4.4 and 0.750, respectively, with a (230Th/238U) ratio of 1.09) are close to the values found for the Nyamuragira basanites. But the most striking feature is the very low (226Ra/230Th) ratio of 0.48, the lowest ever measured in a mafic volcanic rock. The most probable origin of this Ra deficit is the presence of phlogopite (having a high Ra partition coefficient) in the lithospheric mantle, either as a residual phase during low-degree isobaric melting (in batch-melting or a diffusion-controlled melting models), or in a phlogopite-bearing upper mantle through which the melt migrates and equilibrates (in an equilibrium porous flow model commonly used to describe adiabatic melting). The disequilibrium pattern (230Th) > (238U) > (210Pb) ≫ (226Ra), reversed compared to the pattern observed in the Oldoinyo Lengai natrocarbonatite, suggests that a carbonatite melt might have been involved to explain the Ra deficit. We thus discuss the possibility of an early separation of a Ra-enriched carbonate melt either from the olivine-melilitite melt or from a carbonated mantle source, followed by the production of a low-degree melt of olivine-melilitite composition, but the lack of available experimental, petrological and geochemical evidences makes this process somewhat speculative at present. Further studies of recent (<5 ky) olivine-melilitites are needed to check whether the large Ra deficit is a general characteristic of this type of magma that can be used to constrain models of its formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aoki K, Yoshida T, Yusa K, Nakamura Y (1985) Petrology and geochemistry of the Nyamuragira volcano, Zaire. J Volcanol Geotherm Res 25:1–28

    Article  Google Scholar 

  • Bedini RM, Bodinier JL (1999) Distribution of incompatible trace elements between the constituents of spinel péridotite xenoliths: ICP-MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900

    Article  Google Scholar 

  • Blundy J, Wood B (2003) Mineral-melt partitioning of uranium, thorium and their daughters. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Reviews in mineralogy and geochemistry: uranium series geochemistry. Mineralogical Society of America, Washington, pp 59–118

    Google Scholar 

  • Bodinier JL, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido CG (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60:545–550

    Article  Google Scholar 

  • Bourdon B, Sims KWW (2003) U-series constraints on intraplate basaltic magmatism. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Reviews in mineralogy and geochemistry: uranium series geochemistry. Mineralogical Society of America, Washington, pp 214–254

    Google Scholar 

  • Bourdon B, Van Orman JA (2009) Melting of enriched mantle beneath Pitcairn seamounts: unusual U–Th–Ra systematics provide insights into melt extraction processes. Earth Planet Sci Lett 277:474–481

    Article  Google Scholar 

  • Bourdon B, Turner SP, Ribe NM (2005) Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth Planet Sci Lett 239:42–56

    Article  Google Scholar 

  • Brey G (1978) Origin of olivine melilitites—chemical and experimental constraints. J Volcanol Geothem Res 3:61–88

    Article  Google Scholar 

  • Brey G, Green DI (1975) The role of CO2 in the genesis of olivine melilitite. Contrib Mineral Petrol 49:93–103

    Article  Google Scholar 

  • Brooker RA (1998) The effects of CO2 saturation on liquid immiscibility between silicate and carbonate liquids: an experimental study. J Petrol 39:1905–1915

    Google Scholar 

  • Chakrabarti R, Basu AR, Santo AP, Tedesco D, Vaselli O (2009a) Isotopic and geochemical study of the Nyiragongo and Nyamuragira volcanics in the western rift of the East African Rift System. Chem Geol 259:273–289

    Article  Google Scholar 

  • Chakrabarti R, Sims KWW, Basu AR, Reagan M, Durieux J (2009b) Timescales of magmatic processes and eruption ages of the Nyiragongo volcanics from 238U-230Th-226Ra-210Pb disequilibria. Earth Planet Sci Lett 288:149–157

    Article  Google Scholar 

  • Chauvel C, Bureau S, Poggi C (2011) Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostand Geoanal Res 35:125–143

    Article  Google Scholar 

  • Claude-Ivanaj C, Joron J-L, Allègre CJ (2001) 238U–230Th–226Ra fractionation in historical lavas from the Azores: long-lived source heterogeneity vs. metasomatism fingerprints. Chem Geol 176:295–310

    Article  Google Scholar 

  • Condomines M, Tanguy JC, Kieffer G, Allègre CJ (1982) Magmatic evolution of a volcano studied by 230Th–238U-disequilibrium and trace elements systematics: the Etna case. Geochim Cosmochim Acta 46:1397–1416

    Article  Google Scholar 

  • Condomines M, Tanguy JC, Michaud V (1995) Magma dynamics at Mt Etna: constraints from U–Th–Ra–Pb radioactive disequilibria and Sr isotopes in historical lavas. Earth Planet Sci Lett 132:25–41

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135

    Article  Google Scholar 

  • Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett 119:511–525

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, McDonough WF, Spiegelman M, Withers AC (2009) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol 262:57–77

    Article  Google Scholar 

  • Dautria JM, Dupuy C, Takherist D, Dostal J (1992) Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilititic district of the Sahara basin. Contrib Mineral Petrol 111:37–52

    Article  Google Scholar 

  • Dawson JB, Smith JV (1988) Metasomatised and veined upper-mantle xenoliths from Pello Hill, Tanzania: evidence for anomalously-light mantle beneath the of the East African Rift Valley, Tanzanian sector. Contrib Mineral Petrol 100:510–527

    Article  Google Scholar 

  • Dawson JB, Smith JV (1992) Olivine-mica pyroxenite xenoliths from northern Tanzania: metasomatic products of upper-mantle peridotite. J Volcanol Geotherm Res 50:131–142

    Article  Google Scholar 

  • Dawson JB, Smith JV, Jones AP (1985) A comparative study of the bulk rock and mineral chemistry of olivine melilitites and associated rocks from East and South Africa. Neues Jahrb Mineral Abh 152:143–175

    Google Scholar 

  • Demant A, Lestrade P, Lubala RT, Kampunzu AB, Durieux J (1994) Volcanological and petrological evolution of Nyiragongo volcano, Virunga volcanic field, Zaire. Bull Volcanol 56(1):47–61

    Article  Google Scholar 

  • Fabbrizio A, Schmidt MW, Günther D, Eikenberg J (2008) Experimental determination of radium partitioning between leucite and phonolite melt and 226Ra disequilibrium crystallisation ages of leucite. Chem Geol 255:377–387

    Article  Google Scholar 

  • Fabbrizio A, Schmidt MW, Günther D, Eikenberg J (2010) Ra-partitioning between phlogopite and silicate melt and 226Ra/Ba–230Th/Ba isochrons. Lithos 114:121–131

    Article  Google Scholar 

  • Falloon TJ, Green DH (1990) Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology 18:195–199

    Article  Google Scholar 

  • Gilbert CD, Williams-Jones AE (2008) Vapour transport of rare earth elements (REE) in volcanic gas: evidence from encrustations at Oldoinyo Lengai. J Volcanol Geotherm Res 176:519–528

    Article  Google Scholar 

  • Haggerty SE, Erlank AJ, Grey IE (1986) Metasomatic mineral titanate complexing in the upper mantle. Nature 319:761–763

    Article  Google Scholar 

  • Hamilton DL, Bedson P, Esson J (1989) The behaviour of trace elements in the evolution of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 405–427

    Google Scholar 

  • Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28:283–285

    Article  Google Scholar 

  • Ionov DA, Dupuy C, O’Reilly SY, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–297

    Article  Google Scholar 

  • Ivanikov VV, Rukhlov AS, Bell K (1998) Magmatic evolution of the melilitite–carbonatite–nephelinite dyke series of the Turiy Peninsula (Kandalaksha Bay, White Sea, Russia). J Petrol 39:2043–2059

    Article  Google Scholar 

  • Jakovlev A, Rümpker G, Schmeling H, Koulakov I, Lindenfeld M, Wallner H (2013) Seismic images of magmatic rifting beneath the western branch of the East African rift. Geochem Geophys Geosyst 14:4906–4920. doi:10.1002/2013GC004939

    Article  Google Scholar 

  • Jones JH, Walker D, Picket DA, Murrel MT, Beate P (1995) Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa and U between immiscible carbonate and silicate liquids. Geochim Cosmochim Acta 59:1307–1320

    Article  Google Scholar 

  • Kampunzu AB, Lubala RT (eds) (1991) Magmatism in extensional structural settings: the Phanerozoic African Plate. Springer, Berlin

    Google Scholar 

  • Keller J, Zaitsev AN (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos 148:45–53

    Article  Google Scholar 

  • Keller J, Zaitsev AN, Wiedenmann D (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos 91:150–172

    Article  Google Scholar 

  • Klemme S, Meyer H-P (2003) Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures. Chem Geol 199:233–242

    Article  Google Scholar 

  • Konzett J, Wirth R, Hauzenberger C, Whitehouse M (2013) Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos 182–183:165–184

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (1998) Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO + FeO*)–(Na2O + K2O)–(SiO2 + Al2O3 + TiO2)–CO2. J Petrol 39:495–517

    Article  Google Scholar 

  • Lloyd FE, Woolley AR, Stoppa F, Eby GN (2002) Phlogopite-biotite parageneses from the K-mafic-carbonatite effusive magmatic association of Katwe-Kikorongo, SW Uganda. Mineral Petrol 74:299–322

    Article  Google Scholar 

  • Lundstrom CC (2003) Uranium-series Disequilibria in Mid-ocean Ridge Basalts: observations and models of basalt genesis. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Reviews in mineralogy and geochemistry: uranium series geochemistry. Mineralogical Society of America, Washington, pp 175–214

    Google Scholar 

  • Mangler MF, Marks MA, Zaitzev AN, Eby GN, Markl G (2014) Halogens (F, Cl and Br) at Oldoinyo Lengai volcano (Tanzania): effects of magmatic differentiation, silicate–natrocarbonatite melt separation and surface alteration of natrocarbonatite. Chem Geol 365:43–53

    Article  Google Scholar 

  • Martin LHJ, Schmidt MW, Mattsson HB, Guenther D (2013) Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1-3GPa. J Petrol 54:2301–2338

    Article  Google Scholar 

  • Mattsson HB (2012) Rapid magma ascent and short eruption durations in the Lake Natron–Engaruka monogenetic volcanic field (Tanzania): a case study of the olivine melilititic Pello Hill scoria cone. J Volcanol Geotherm Res 247–248:16–25

    Article  Google Scholar 

  • Mattsson HB, Nandedkar RH, Ulmer P (2013) Petrogenesis of the melilititic and nephelinitic rock suites in the Lake Natron–Engaruka monogenetic volcanic field, northern Tanzania. Lithos 179:175–192

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Moore KR (2012) Experimental study in the Na2O–CaO–MgO–Al2O3–SiO2–CO2 system at 3 GPa: the effect of sodium on mantle melting to carbonate-rich liquids and implications for the petrogenesis of silicocarbonatites. Mineral Mag 76(2):285–309

    Article  Google Scholar 

  • Moore KR, Wood BJ (1998) The transition from carbonate to silicate melts in the CaO–MgO–SiO2–CO2 system. J Petrol 39:1943–1951

    Google Scholar 

  • Ongendangenda T (1992) Le magmatisme potassique du volcan Visoke (Chaîne des Virunga, Rift Est Africain): aspects volcanologiques, pétrologiques et géochimiques. Thèse de Doctorat, Université Aix-Marseille III, pp 304

  • Ongendangenda T (2004) Magmatologie du volcan Mugogo dans la chaîne des Virunga (Rift du Kivu, RDC). Bulletin du Centre de Recherches Géologiques et Minières V(I):67–77

  • Pilleyre T, Sanzelle S, Miallier D, Faïn J, Courtine F (2006) Theoretical and experimental estimation of self-attenuation corrections in determination of 210Pb by γ-spectrometry with well Ge detector. Radiat Meas 41:323–329

    Article  Google Scholar 

  • Platz T, Foley SF, Andre L (2004) Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga Province, D.R. Congo. J Volcanol Geotherm Res 136:269–295

    Article  Google Scholar 

  • Pouclet A (1977) Contribution à l’étude structurale de l’aire volcanique des Virunga, rift de l’Afrique centrale. Rev Geogr Phys Géol Dyn 19(2):115–124

    Google Scholar 

  • Pyle DM, Dawson JB, Ivanovich M (1991) Short-lived decay series disequilibria in the natrocarbonatite lavas of Oldoinyo Lengai, Tanzania: constraints on the timing of magma genesis. Earth Planet Sci Lett 105:378–396

    Article  Google Scholar 

  • Reagan MK, Volpe AM, Cashman KV (1992) 238U and 232Th-series chronology of phonolite fractionation at Mount Erebus. Antarctica Geochim Cosmochim Acta 56:1401–1407

    Article  Google Scholar 

  • Reagan MK, Turner S, Legg M, Sims KWW, Hards VL (2008) 238U- and 232Th-decay series constraints on the timescales of crystal fractionation to produce the phonolite erupted in 2004 near Tristan da Cunha, South Atlantic Ocean. Geochim Cosmochim Acta 72:4367–4378

    Article  Google Scholar 

  • Rogers NW, De Mulder M, Hawkesworth CJ (1992a) An enriched mantle source for potassic basanites: evidence from Karisimbi volcano, Virunga volcanic province, Rwanda. Contrib Mineral Petrol 111:543–556

    Article  Google Scholar 

  • Rogers NW, Hawkesworth CJ, Palacz ZA (1992b) Phlogopite in the generation of olivine-melilitites from Namaqualand, South Africa and implications for element fractionation processes in the upper mantle. Lithos 28:347–365

    Article  Google Scholar 

  • Rogers NW, James D, Kelley SP, De Mulder M (1998) The generation of potassic lavas from the eastern Virunga province, Rwanda. J Petrol 39:1223–1247

    Article  Google Scholar 

  • Rogers NW, Thomas LE, Macdonald R, Hawkesworth CJ, Mokadem F (2006) 238U–230Th disequilibrium in recent basalts and dynamic melting beneath the Kenya rift. Chem Geol 234:148–168

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell B (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Saal AE, Van Orman JA (2004) The 226Ra enrichment in oceanic basalts: evidence for melt-cumulate diffusive interaction processes within the oceanic lithosphere. Geochem Geophys Geosyst 5. doi:10.1029/2003GC000620

  • Sims KWW, Pichat S, Reagan M, Kyle PR, Dulaiova H, Dunbar R, Prytulak J, Sawyer G, Layne GD, Blichert-Toft J, Gauthier PJ, Charette MA, Elliott TR (2013) On the time scales of magma genesis, melt evolution, crystal growth rates and magma degassing in the Erebus volcano magmatic system using the 238U, 235U and 232Th decay series. J Petrol 54:235–271

    Article  Google Scholar 

  • Snyder DC, Widom E, Pietruszka AJ, Carlson RW, Schmincke HU (2007) Time scales of formation of zoned magma chambers: U-series disequilibria in the Fogo A and 1563 A.D. trachyte deposits, São Miguel, Azores. Chem Geol 239:138–155

    Article  Google Scholar 

  • Spiegelman M (2000) UserCalc: a web-based uranium series calculator for magma migration problems. Geochem Geophys Geosyst. doi:10.1029/1999GC000030

    Google Scholar 

  • Spiegelman M, Elliott T (1993) Consequences of melt transport for uranium series disequilibrium. Earth Planet Sci Lett 118:1–20

    Article  Google Scholar 

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. Am Mineral 77(7–8):784–794

    Google Scholar 

  • Van Orman JA, Saal AE, Bourdon B, Hauri EH (2006) Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt-cumulate interaction. Geochim Cosmochim Acta 70:4797–4812

    Article  Google Scholar 

  • Vanlerberghe L, Hertogen J, MacDougall JD (1987) Geochemical evolution and Th–U isotope systematics of alkaline lavas from Nyiragongo volcano (African Rift). Terra Cogn 7:367

    Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39(2095):2104

    Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40

    Article  Google Scholar 

  • Verhaeghe M (1958a) Le volcan Mugogo. Eruption du 1 Août 1957. Exploration du Parc Naturel Albert, fascicule 3, pp 33 (Institut des Parcs Nationaux du Congo Belge, Bruxelles)

  • Verhaeghe M (1958b) L’éruption du volcan Mugogo au Kivu. C R Acad Sci Paris 246(part 2):2917–2920

  • Vollmer R, Norry MJ (1983) Possible origin of K-rich volcanic rocks from Virunga, East Africa, by metasomatism of continental crustal material: Pb, Nd and Sr isotopic evidence. Earth Planet Sci Lett 64:374–386

    Article  Google Scholar 

  • Wendlandt RF, Harrison WJ (1979) Rare Earth partitioning between immiscible carbonate and silicate liquids and CO2-vapor: results and implications for the formation of light rare earth-enriched rocks. Contrib Mineral Petrol 69:409–419

    Article  Google Scholar 

  • Williams RW, Gill JB (1992) Th isotope and U-series disequilibria in some alkali basalts. Geophys Res Lett 19(2):139–142

    Article  Google Scholar 

  • Williams RW, Gill JB, Bruland KW (1986) Ra–Th disequilibria systematics: time of carbonatite magma formation at Oldoinyo Lengai volcano, Tanzania. Geochim Cosmochim Acta 50:1249–1259

    Article  Google Scholar 

  • Williams RW, Collerson KD, Gill JB, Deniel C (1992) High Th/U ratios in subcontinental lithospheric mantle: mass spectrometric measurement of Th isotopes in Gaussberg lamproites. Earth Planet Sci Lett 111:257–268

    Article  Google Scholar 

  • Woolley AR, Bailey DK (2012) The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. Mineral Mag 76:259–270

    Article  Google Scholar 

  • Wyllie PJ, Lee WJ (1998) Model system controls on conditions for formation of magnesiocarbonatite and calciocarbonatite magmas from the mantle. J Petrol 39:1885–1893

    Article  Google Scholar 

Download references

Acknowledgments

An early version of this manuscript benefited from useful comments by T. Elliott and three anonymous reviewers. We also appreciate the comments made on the present version by G. Brey and an anonymous reviewer, who provided insightful suggestions on melting models. M. Spiegelman is thanked for his help with the UserCalc program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Condomines.

Additional information

Communicated by Franck Poitrasson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2015_1124_MOESM1_ESM.doc

Supplementary Table: Trace element concentrations (ppm) of BCR-2 and BHVO-2 international standards, measured by ICP-MS at LMV during the course of this study. The relative standard deviations (2 RSD) between the n analyses of these standards are indicated. Two duplicate analyses of the Mugogo sample OT6 (D indicates duplicate dissolution) are also reported, with their relative differences in %. (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condomines, M., Carpentier, M. & Ongendangenda, T. Extreme radium deficit in the 1957 AD Mugogo lava (Virunga volcanic field, Africa): its bearing on olivine-melilitite genesis. Contrib Mineral Petrol 169, 29 (2015). https://doi.org/10.1007/s00410-015-1124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1124-9

Keywords

Navigation