Skip to main content
Log in

Peculiar Mg–Ca–Si metasomatism along a shear zone within the mantle wedge: inference from fine-grained xenoliths from Avacha volcano, Kamchatka

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We found extremely high-Mg# (=Mg/(Mg + total Fe) atomic ratio) ultramafic rocks in Avacha peridotite suite. All the high-Mg# rocks have higher modal amounts of clinopyroxene than ordinary Avacha peridotite xenoliths, and their lithology is characteristically heterogeneous, varying from clinopyroxenite through olivine websterite to pyroxene-bearing dunite. The Mg# of minerals is up to 0.99, 0.98 and 0.97 in clinopyroxene, orthopyroxene and olivine, respectively, decreasing progressively toward contact with dunitic part, if any. The petrographical feature of pyroxenes in the high-Mg# pyroxenite indicates their metasomatic origin, and high LREE/HREE ratio of the metasomatic clinopyroxene implies that the pyroxenites are the products of reaction between dunitic peridotites and high-Ca, silicate-rich fluids. The lithological variation of the Avacha high-Mg# pyroxenites from clinopyroxenite to olivine websterite resulted from various degrees of fluid-rock reaction coupled with fractional crystallization of the high-Ca fluids, which started by precipitation of high-Mg# clinopyroxene. Such fluids were possibly generated originally at a highly reduced serpentinized peridotite layer above the subducting slab. The fluids can reach the uppermost mantle along a shear zone as a conduit composed of fine-grained peridotite that developed after continent-ward asthenospheric retreats from the mantle wedge beneath the volcanic front. The fluids are incorporated in mantle partial melts when the magmatism is activated by expansion of asthenosphere to mantle wedge beneath the volcanic front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen DE, Seyfried WE Jr (2003) Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochim Cosmochim Acta 67:1531–1542

    Article  Google Scholar 

  • Arai S (1975) Contact metamorphosed dunite-harzburgite complex in the Chugoku district, western Japan. Contrib Mineral Petrol 52:1–16

    Article  Google Scholar 

  • Arai S (1980) Dunite-harzburgite-chromitite complexes as refractory residue in the Sangun-Yamaguchi zone, western Japan. J Petrol 21:141–165

    Google Scholar 

  • Arai S, Ishimaru S (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. J Petrol 49:665–695

    Article  Google Scholar 

  • Arai S, Ishimaru S, Okrugin VM (2003) Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: implication for the metasomatic agent. Island Arc 12:233–246

    Article  Google Scholar 

  • Arai S, Takada S, Michibayashi K, Kida M (2004) Petrology of peridotite xenoliths from Iraya volcano, Philippines, and its implication for dynamic mantle-wedge processes. J Petrol 45:369–389

    Article  Google Scholar 

  • Arai S, Abe N, Ishimaru S (2007) Mantle peridotites from the western Pacific. Gondwana Res 11:180–199

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85

    Article  Google Scholar 

  • Braitseva OA, Bazanova LI, Melekestev IV, Sulerzhitskiy LD (1998) Large Holocene eruptions of Avacha volcano, Kamchatka (7250–3700 14C years B. P.). Volcanol Seismol 20:1–27

    Google Scholar 

  • Dawson JB (1984) Contrasting types of upper-mantle metasomatism? In: Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships, vol Developments in Petrology. Elsevier Science, New York, pp 289–294

    Google Scholar 

  • Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The rainbow vent fluids (36º14′N MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48

    Article  Google Scholar 

  • Evans BW, Frost BR (1975) Chrome–spinel in progressive metamorphism: a preliminary analysis. Geochim Cosmochim Acta 39:959–972

    Article  Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the Western Pacific. J Geophys Res 77:4432–4460

    Article  Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086

    Article  Google Scholar 

  • Gorbatov A, Kostoglodov V, Suarez G, Gordeev E (1997) Seismicity and structure of the Kamchatka subduction zone. J Geophys Res 102:17883–17898

    Article  Google Scholar 

  • Hawthorne FC, Oberti R (2007) Classification of the Amphiboles. Rev Mineral Geochem 67:55–88

    Article  Google Scholar 

  • Hochstaedter AG, Kepezhinskas PK, Defant MJ, Drummond MS, Bellon H (1994) On the tectonic significance of arc volcanism in northern Kamchatka. J Geol 102:639–954

    Article  Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci 280-A:389–426

    Google Scholar 

  • Ishida Y, Morishita T, Arai S, Shirasaka M (2004) Simultaneous in situ multi-element analysis of minerals on thin section using LA-ICP-MS. Sci Rep Kanazawa Univ 48:31–42

    Google Scholar 

  • Ishimaru S, Arai S (2008a) Nickel enrichment in mantle olivine beneath a volcanic front. Contrib Mineral Petrol 156:119–131

    Article  Google Scholar 

  • Ishimaru S, Arai S (2008b) Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge. Am Mineral 93:1061–1065

    Article  Google Scholar 

  • Ishimaru S, Arai S (2008c) Calcic amphiboles in peridotite xenoliths from Avacha volcano, Kamchatka, and their implications for metasomatic conditions in the mantle wedge. In: Coltorti M, Gregoire M (eds) Metasomatism in oceanic and continental lithospheric mantle. Geological Society of London Special Publication, vol 293, pp 35–55

  • Ishimaru S, Arai S, Ishida Y, Shirasaka M, Okrugin VM (2007) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha Volcano, Southern Kamchatka. J Petrol 48:395–433

    Article  Google Scholar 

  • Ishimaru S, Arai S, Shukuno H (2009) Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka. Earth Planet Sci Lett 284:352–360

    Article  Google Scholar 

  • Janecky DR, Seyfried WE Jr (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry. Geochim Cosmochim Acta 50:1357–1378

    Article  Google Scholar 

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalt. Contrib Mineral Petrol 73:287–310

    Article  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Kretz R (1963) Distribution of magnesium and iron between orthopyroxene and calcic pyroxene in natural mineral assemblages. J Geol 71:773–785

    Article  Google Scholar 

  • Kutiev FS, Ivanov BV, Ovsyannikov AA, Anikin LP, Simonova LS (1980) Exotic lava (avachite) from Avacha volcano. Doklady Akademii Nauk SSSR 255:145–148

    Google Scholar 

  • Levin V, Park J, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A (2002) Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics 358:233–265

    Article  Google Scholar 

  • Lorand J-P, Grégoire M (2006) Petrogenesis of base metal sulphide assemblages of some peridotites from the Kaapval craton (South Africa). Contrib Mineral Petrol 151:521–538

    Article  Google Scholar 

  • Mercier J-CC, Nicolas A (1975) Textures and Fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Google Scholar 

  • Minster JB, Jordan TH, Molnar P, Haines E (1974) Numerical modelling of instantaneous plate tectonics. Geophys J Royal Astronomical Soc 36:541–576

    Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1969) Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24º and 30º North latitude. Contrib Mineral Petrol 23:117–127

    Article  Google Scholar 

  • Morishita T, Ishida Y, Arai S, Shirasaka M (2005) Determination of multiple trace element compositions in thin (<30 μm) lasers of NIST SRM 614 and 616 using laser albration-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Geostand Geoanal Res 29:107–122

    Article  Google Scholar 

  • Nishizawa O, Matsui Y (1974) Iron (II)-magnesium exchange equilibrium between olivine and calcium-free pyroxene over a temperature range 800°C to 1300°C. Bull Soc Fr Minéral Cristallogr 97:122–130

    Google Scholar 

  • Obata M, Banno S, Mori T (1974) The iron-magnesium partitioning between naturally occurring coexisting olivine and Ca-rich clinopyroxene: an application of the simple mixture model to olivine solid solution. Bull Soc Fr Minéral Cristallogr 97:101–107

    Google Scholar 

  • Portnyagin MV, Plechov PY, Matveev SV, Osipenko AB, Mironov NL (2005) Petrology of Avachites, high-magnesian basalts of Avachinsky volcano, Kamchatka: I. General characteristics and composition of rocks and minerals. Petrology 13:99–121

    Google Scholar 

  • Python M, Ceuleneer G, Ishida Y, Barrat J-A, Arai S (2007) Oman diopsidites: a new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth Planet Sci Lett 255:289–305

    Article  Google Scholar 

  • Roden MF, Murthy VR (1985) Mantle metasomatism. Annu Rev Earth Planet Sci 13:269–296

    Article  Google Scholar 

  • Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10:113–120

    Article  Google Scholar 

  • Smith D, Riter JCA, Mertzman SA (1999) Erratum to “Water-rock interactions, orthopyroxene growth, and Si-enrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States”. Earth Planet Sci Lett 167:347–356

    Article  Google Scholar 

  • Tatsumi Y (1986) Formation of the volcanic front in subduction zones. Geophys Res Lett 13:717–720

    Article  Google Scholar 

  • Tatsumi Y, Furukawa Y, Kogiso T, Yamanaka Y, Yokoyama T, Fedotov SA (1994) A third volcanic chain in Kamchatka: thermal anomaly at transform/convergence plate boundary. Geophys Res Lett 21:537–540

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

Download references

Acknowledgments

Samples we examined in this study were collected by Prof. V. M. Okrugin, Dr. K. Kadoshima and Mr. A. Koyanagi. We thank Prof. T. L. Grove and two anonymous reviewers, whose comments were helpful in reconstruction of the former manuscript. We greatly appreciate Dr. H. Shukuno and Dr. Y. Tatsumi for their assistance with map analysis in JAMSTEC. LA-ICP-MS analyses were supported by Dr. T. Morishita and Dr. A. Tamura. This research was supported by Grant-in-Aid (A) (SA) and Grant-in-Aid for Young Scientists (B) 21740375 (SI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoko Ishimaru.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishimaru, S., Arai, S. Peculiar Mg–Ca–Si metasomatism along a shear zone within the mantle wedge: inference from fine-grained xenoliths from Avacha volcano, Kamchatka. Contrib Mineral Petrol 161, 703–720 (2011). https://doi.org/10.1007/s00410-010-0558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0558-3

Keywords

Navigation