Skip to main content

Advertisement

Log in

The Association Between Bone Mineral Density and Airflow Limitation in a Cohort of Fit Elderly Women

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

As studies examining the association between bone mineral density (BMD) and airflow limitation (AL) have produced conflicting results, the current one set out to analyze if and to what degree there are any correlations between these variables in a population of fit elderly women.

Methods

One hundred and twenty-one non-smoking, fit and healthy women (age ≥ 65 years) underwent anthropometric assessment, laboratory testing (serum 25-hydroxy vitamin D, parathormone, and cytokine levels), pulmonary function testing (PFT), and dual-energy X-ray absorptiometry to evaluate BMD values of the lumbar and femoral regions.

Results

A significant positive association was found between FEV1/FVC ratio (Tiffeneau index), a sensitive index of AL, and lumbar and femoral BMD; a 10 % increase in the FEV1/FVC ratio resulted in a significant increase of 0.025 g/cm2 in the total hip (p = 0.05), 0.027 g/cm2 in the femoral neck (p = 0.02), 0.028 g/cm2 in the femoral trochanter (p = 0.01), and 0.047 g/cm2 in the lumbar (p = 0.03) BMDs. Binary logistic analyses demonstrated more than a threefold higher risk of low BMD values for the lowest FEV1/FVC quartile in the lumbar (OR 4.62, 95 % CI 1.48–14.40, p = 0.008), total hip (OR 4.09, 95 % CI 1.28–13.05, p = 0.02 for the second quartile), and femoral trochanter regions (OR 3.90, 95 % CI 1.25–12.20, p = 0.02 for the third quartile).

Conclusions

AL was associated with a higher risk of reduced BMD in healthy, fit elderly women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ström O, Borgström F, Kanis JA et al (2011) Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 6:59–155

    Article  PubMed  Google Scholar 

  2. Peck WA, Burckhardt P, Christiansen C et al (1993) Consensus development conference—diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  3. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  4. Cooper C, Cawley M, Bhalla A et al (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 10:940–947

    Article  CAS  PubMed  Google Scholar 

  5. Gale CR, Martyn CN, Kellingray S et al (2001) Intrauterine programming of adult body composition. J Clin Endocrinol Metab 86:267–272

    CAS  PubMed  Google Scholar 

  6. Graat-Verboom L, Spruit MA, van den Borne BEEM et al (2009) Correlates of osteoporosis in chronic obstructive pulmonary disease: an underestimated systemic component. Respir Med 103:1143–1151

    Article  PubMed  Google Scholar 

  7. Vrieze A, de Greef MHG, Wijkstra PJ et al (2007) Low bone mineral density in COPD patients related to worse lung function, low weight and decreased fat-free mass. Osteoporos Int 18:1197–1202

    Article  CAS  PubMed  Google Scholar 

  8. Bolton CE, Ionescu AA, Shiels KM et al (2004) Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170:1286–1293

    Article  PubMed  Google Scholar 

  9. Ferguson GT, Calverley PMA, Anderson JA et al (2009) Prevalence and progression of osteoporosis in patients with COPD: results from the towards a revolution in COPD health study. Chest 136:1456–1465

    Article  PubMed  Google Scholar 

  10. de Vries F, van Staa TP, Bracke MSGM et al (2005) Severity of obstructive airway disease and risk of osteoporotic fracture. Eur Respir J 25:879–884

    Article  PubMed  Google Scholar 

  11. Coin A, Sergi G, Marin S et al (2010) Predictors of low bone mineral density in elderly males with chronic obstructive pulmonary disease: the role of body mass index. Aging Male 13:142–147

    Article  PubMed  Google Scholar 

  12. Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364:709–721

    Article  PubMed  Google Scholar 

  13. Van Brabandt H, Cauberghs M, Verbeken E, Moerman P, Lauweryns JM, Van de Woestijne KP (1983) Partitioning of pulmonary impedance in excised human and canine lungs. J Appl Physiol 55:1733–1742

    PubMed  Google Scholar 

  14. Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T (1992) Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol 72:1016–1023

    CAS  PubMed  Google Scholar 

  15. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2016. www.goldcopd.org. Accessed 25 Mar 2016

  16. Pride NB (2005) Ageing and changes in lung mechanics. Eur Respir J 26:563–565

    Article  CAS  PubMed  Google Scholar 

  17. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilator flows. Eur Respir J 6(Suppl 16):5–40

    Article  PubMed  Google Scholar 

  18. Janssens JP, Pache JC, Nicod LP (1999) Physiological changes in respiratory function associated with ageing. Eur Respir J 13:197–205

    Article  CAS  PubMed  Google Scholar 

  19. Sharma G, Goodwin J (2006) Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 1:253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vignola AM, Scichilone N, Bousquest J, Bonsignore G, Bellia VA (2003) Aging and asthma: pathophysiological mechanisms. Allergy 58:165–175

    Article  CAS  PubMed  Google Scholar 

  21. Jeon YK, Shin MJ, Kim WJ et al (2014) The relationship between pulmonary function and bone mineral density in healthy nonsmoking women: the Korean National Health and Nutrition Examination Survey (KNHANES) 2010. Osteoporos Int 25:1571–1576

    Article  CAS  PubMed  Google Scholar 

  22. Choi JW, Pai SH (2004) Association between respiratory function and osteoporosis in pre- and postmenopausal women. Maturitas 48:253–258

    Article  PubMed  Google Scholar 

  23. Dennison EM, Dhanwal DK, Shaheen SO et al (2013) Is lung function associated with bone mineral density? Results from the Hertfordshire cohort study. Arch Osteoporos 8:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lekamwasam S, Trivedi DP, Khaw KT (2002) An association between respiratory function and bone mineral density in women from the general community: a cross sectional study. Osteoporos Int 13:710–715

    Article  CAS  PubMed  Google Scholar 

  25. Lekamwasam S, Trivedi DP, Khaw KT (2005) An association between respiratory function and hip bone mineral density in older men: a cross-sectional study. Osteoporos Int 16:204–207

    Article  CAS  PubMed  Google Scholar 

  26. Sin DD, Man JP, Man SFP (2003) The risk of osteoporosis in Caucasian men and women with obstructive airways disease. Am J Med 114:10–14

    Article  PubMed  Google Scholar 

  27. Zhou Y, Wang C, Yao W et al (2009) COPD in Chinese nonsmokers. Eur Respir J 33:509–518

    Article  CAS  PubMed  Google Scholar 

  28. Malloy PF, Cummings JL, Coffey CE et al (1997) Cognitive screening instruments in neuropsychiatry: a report of the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 9:189–197

    Article  CAS  PubMed  Google Scholar 

  29. Parmelee PA, Thuras PD, Katz IR, Lawton MP (1995) Validation of the cumulative illness rating scale in a geriatric residential population. J Am Geriatr Soc 43:130–137

    Article  CAS  PubMed  Google Scholar 

  30. Guralnik JM, Ferrucci L, Simonsick EM et al (1995) Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 332:556–561

    Article  CAS  PubMed  Google Scholar 

  31. American Thoracic Society (1995) Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136

    Article  Google Scholar 

  32. Hankinson JL, Odencrantz JR, Fedan KB (1999) Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 159:179–187

    Article  CAS  PubMed  Google Scholar 

  33. Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57

    Article  CAS  PubMed  Google Scholar 

  34. Graat-Verboom L, Smeenk FWJM, van den Borne BEEM et al (2012) Risk factors for osteoporosis in Caucasian patients with moderate chronic obstructive pulmonary disease: a case control study. Bone 50:1234–1239

    Article  PubMed  Google Scholar 

  35. Mundy GR (2007) Osteoporosis and inflammation. Nutr Rev 65:S147–S151

    Article  PubMed  Google Scholar 

  36. Kwan Tat S, Padrines M, Théoleyre S et al (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60

    Article  PubMed  Google Scholar 

  37. Bai P, Sun Y, Jin J et al (2011) Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis. Respir Res 12:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Persson LJP, Aanerud M, Hiemstra PS et al (2012) Chronic obstructive pulmonary disease is associated with low levels of vitamin D. PLoS One 7:e38934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franco CB, Paz-Filho G, Gomes PE et al (2009) Chronic obstructive pulmonary disease is associated with osteoporosis and low levels of vitamin D. Osteoporos Int 20:1881–1887

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Trevisan.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevisan, C., Vianello, A., Veronese, N. et al. The Association Between Bone Mineral Density and Airflow Limitation in a Cohort of Fit Elderly Women. Lung 194, 897–904 (2016). https://doi.org/10.1007/s00408-016-9948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9948-2

Keywords

Navigation