Skip to main content
Log in

History of the Lenz-Ising Model 1920–1950: From Ferromagnetic to Cooperative Phenomena

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract.

I chart the considerable changes in the status and conception of the Lenz-Ising model from 1920 to 1950 in terms of three phases: In the early 1920s, Lenz and Ising introduced the model in the field of ferromagnetism. Based on an exact derivation, Ising concluded that it is incapable of displaying ferromagnetic behavior, a result he erroneously extended to three dimensions. In the next phase, Lenz and Ising’s contemporaries rejected the model as a representation of ferromagnetic materials because of its conflict with the new quantum mechanics. In the third phase, from the early 1930s to the early 1940s, the model was revived as a model of cooperative phenomena. I provide more detail on this history than the earlier accounts of Brush (1967) and Hoddeson, Schubert, Heims, and Baym (1992) and question some of their conclusions. Moreover, my account differs from these in its focus on the development of the model in its capacity as a model. It examines three aspects of this development: (1) the attitudes on the degree of physical realism of the Lenz-Ising model in its representation of physical phenomena; (2) the various reasons for studying and using it; and (3) the effect of the change in its theoretical basis during the transition from the old to the new quantum mechanics. A major theme of my study is that even though the Lenz-Ising model is not fully realistic, it is more useful than more realistic models because of its mathematical tractability. I argue that this point of view, important for the modern conception of the model, is novel and that its emergence, while perhaps not a consequence of its study, is coincident with the third phase of its development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P. W. (1984): “Gregory Wannier,” Physics Today 40(5), 100–102.

  2. Ashkin, J. and Teller, E. (1943): “Statistics of Two-Dimensional Lattices with Four Components,” Physical Review 64, 179–184.

    Google Scholar 

  3. Berlin, T. H. and Kac, M. (1952): “The Spherical Model of a Ferromagnet,” Physical Review 86, 821–835.

    Google Scholar 

  4. Bethe, H. A. (1935): Statistical Theory of Superlattices,” Proceedings of the Royal Society [A] 150, 552–575.

  5. Bethe, H. A. and Kirkwood, J. G. (1939): “Critical Behavior of Solid Solutions in the Order- Disorder Transformation,” Journal of Chemical Physics 7, 578–582.

    Google Scholar 

  6. Bethe, H. A. with Hoddeson, Lillian (1981): Interview, April 29, 1981, Niels Bohr Library, American Institute of Physics, College Park, Maryland.

  7. Bhattacharjee, S. M and Khare, A. (1995): “Fifty Years of the Exact Solution of the Two-dimensional Ising Model by Onsager,” Current Science (India) 69, 816–821.

    Google Scholar 

  8. Bitter, F. (1937): Introduction to Ferromagnetism. McGraw-Hill, New York.

  9. Born, M. (1915): Dynamik der Kristallgitter. B. G. Teubner, Leipzig.

  10. Bragg, W. L. and Williams, E. J. (1934): “The Effect of Thermal Agitation on Atomic Arrangement in Alloys,” Proceedings of the Royal Society [A] 145, 699–730.

  11. Brush, S. G. (1966): Kinetic Theory, Vol 1. Pergamon Press, Oxford.

  12. Brush, S. G. (1967): “History of the Lenz-Ising Model,” Reviews of Modern Physics 39, 883–893.

  13. Brush, S. G. (1976): The Kind of Motion We Call Heat: A History of Kinetic Theory of Gases in the 19th Century. 2 Vols, North-Holland, Amsterdam.

  14. Brush, S. G. (1983): Statistical Physics and the Atomic Theory of Matter. Princeton University Press, Princeton.

  15. Cat, J. (2001): “On Understanding: Maxwell on the Methods of Illustration and Scientific Metaphor,” Studies in History and Philosophy of Modern Physics 32, 395–442.

  16. Cipra, B. (2000): “Mathematics: Statistical Physicists Phase Out a Dream,” Science 288, 1561–1562.

  17. Courant, R. (1930): Vorlesungen über Differential- und Integralrechnung, Second Edition. Springer, Berlin.

  18. Dalitz, R. H. and Peierls, R. E., eds. (1997): Selected Scientific Papers of Sir Rudolf Peierls. With Commentary. World Scientific, Singapore and Imperial College Press, London.

  19. Dirac, P. A. M. (1929): “Quantum Mechanics of Many-Electron Systems,” Proceedings of the Royal Society [A] 123, 714–733.

  20. Domb, C. (1949): “Order-Disorder Statistics. I,” Proceedings of the Royal Society [A] 196, 36–50.

  21. Domb, C. (1996): The Critical Point. Taylor and Francis, London.

  22. Dresden, M. (1987): H. A. Kramers: Between Tradition and Revolution. Springer, New York.

  23. Dresden, M. (1988): “Kramers’s Contribution to Statistical Mechanics,” Physics Today 41(9), 26–33.

    Google Scholar 

  24. Eckert, M., Schubert, H. and Torkar, G. with C. Blondel and P. Quédec (1992): “The Roots of Solid-State Physics before Quantum Mechanics,” in Hoddeson, Braun, Teichmann, and Weart (1992), pp. 3–87.

  25. Ehrenfest, P. (1921): “Note on the Paramagnetism of Solids,” Verhandlingen der Koninklijke Akademie van Wetenschappen (Amsterdam) 29, 793–796.

  26. Fowler, R. H. (1934): “Quelques remarques sur la théorie des métaux liquides de Mott et sur les points de transition des métaux et d’autres solides,” Helvetica Physica Acta Supplementum 7, 72–80.

    Google Scholar 

  27. Fowler, R. H. (1936): “Adsorption Isotherms. Critical Conditions,” Proceedings of the Cambridge Philosophical Society 32, 144–151.

  28. ter Haar, D. (1998): Master of Modern Physics. The Scientific Contributions of H. A. Kramers”. Princeton University Press, Princeton.

  29. ter Haar, D. and Martin, B. (1950): “Statistics of the 3-Dimensional Ferromagnet,” Physical Review 77, 721–722.

    Google Scholar 

  30. Heisenberg, W. (1928a): “Zur Theorie des Ferromagnetismus,” Zeitschrift für Physik 49, 619–636.

  31. Heisenberg, W. (1928b): “Zur Quantentheorie des Ferromagnetismus,” in P. Debye, ed.: Probleme der modernen Physik: Arnold Sommerfeld zum 60. Geburtstage gewidmet von seinen Schülern. S. Hirzel, Leipzig, pp. 114–122.

  32. Heller, G. and Kramers, H. A. (1934): “Ein Klassisches Modell des Ferromagnetikums und seine nachträgliche Quantisierung im Gebiete tiefer Temperaturen,” Verhandlingen der Koninklijke Akademie van Wetenschappen (Amsterdam) 37, 378–385.

  33. Hemmer, P. C., Holden, H. and Kjelstrup Ratkje, S., eds. (1996): The Collected Works of Lars Onsager. World Scientific, Singapore.

  34. Hermann, A., von Meyenn, K., and Weisskopf, V. F. (1979): Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u. a. Scientific Correspondence with Bohr, Einstein, Heisenberg, a. o.. Vol. 1: 1919–1929. Springer, New York.

  35. Herzfeld, K. F. (1925): “Molekular- und Atomtheorie des Magnetismus,” Physikalische Zeitschrift 26, 825–832.

    Google Scholar 

  36. Hoddeson, L., Baym, G., and Eckert, M. (1992): “The Development of the Quantum Mechanical Electron Theory of Metals, 1926–1933,” in Hoddeson, Braun, Teichmann, and Weart (1992), pp. 88–181.

  37. Hoddeson, L., Braun, E., Teichmann, J. and Weart, S. (1992): Out of the Crystal Maze. Chapters from the History of Solid-State Physics. Oxford University Press, New York.

  38. Hoddeson, L., Schubert, H., Heims, S. J., and Baym, G. (1992): “Collective Phenomena,” in Hoddeson, Braun, Teichmann, and Weart (1992), pp. 489–616.

  39. Hofstadter, D. R. (1984): “A Nose for Depth: Gregory Wannier’s Style in Physics,” Physics Reports 110, 273–278.

  40. Huang, K. (1963): Statistical Mechanics. Wiley, New York.

  41. Hughes, R. I. G. (1999): “The Ising model, Computer Simulation, and Universal Physics,” in Morgan and Morrison (1999), pp. 97–145.

  42. Hulthén, L. (1938): “Über das Austauschproblem eines Kristalles,” Arkiv för Matematik, Astronomi och Fysik 26A, 1–106

  43. Ising, E. (1924): “Beitrag zur Theorie des Ferro- und Paramagnetismus,” Ph.D. Thesis, University of Hamburg.

  44. Ising, E. (1925): “Beitrag zur Theorie des Ferromagnetismus,” Zeitschrift für Physik 31, 253–258.

  45. Jammer, M. (1966): The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York.

  46. Kac, M. (1964): “The work of T. H. Berlin in Statistical Mechanics...A Personal Reminisence,” Physics Today 17(10), 40–42.

  47. Kac, M. (1971): “The Role of Models in Understanding Phase Transitions,” in Mills, Ascher, and Jaffee (1971), pp. 23–39.

  48. Kaufman, B. (1949): “Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis,” Physical Review 76, 1232–1243.

    Google Scholar 

  49. Keith, S.T. and Quedec, P. (1992): “Magnetism and Magnetic Materials,” in Hoddeson, Braun, Teichmann, and Weart (1992), pp. 359–442.

  50. Kikuchi, R. (1951): “A Theory of Cooperative Phenomena,” Physical Review 81, 988–1003.

    Google Scholar 

  51. Kirkwood, J. G. (1938): “Order and Disorder in Binary Solid Solutions,” Journal of Chemical Physics 6, 70–75.

    Google Scholar 

  52. Kobe, S. (1997): “Ernst Ising - Physicist and Teacher,” Journal of Statistical Mechanics 88, 991–995.

    Google Scholar 

  53. Kobe, S. (2000): “Ernst Ising 1900–1998,” Brazilian Journal of Physics 40, 649–653.

    Google Scholar 

  54. Kramers, H. A. (1929): “La rotation paramagnétique du plan de polarisation dans les cristaux uniaxes de terres rares,” Communications from the Physical Laboratory of the University at Leiden 18, Supplement 68b, 19–36.

  55. Kramers, H. A. (1936): “Zur Theorie des Ferromagnetismus,” in 7e Congres international du froid: La Haye-Amsterdam juin 1936. Rapports et Communications. Also in: Communications from the Physical laboratory of the University of Leiden 22, Supplement 83, 1–22.

  56. Kramers, H. A. and Becquerel, J. (1929): “La rotation paramagnétique du plan de polarisation dans les cristaux de tysonite et de xénotime,” Communications from the Physical Laboratory of the University at Leiden 18, Supplement 68c, 39–50.

  57. Kramers, H. A. and Wannier, G. H. (1941a): “Statistics of the Two-Dimensional Ferromagnet Part I,” Physical Review 60, 252–262.

    Google Scholar 

  58. Kramers, H. A. and Wannier, G. H. (1941b): “Statistics of the Two-Dimensional Ferromagnet Part II,” Physical Review 60, 263–277.

    Google Scholar 

  59. Krieger, M. H. (1996): Constitutions of Matter: Mathematically Modeling the Most Everyday of Physical Phenomena. The University of Chicago Press, Chicago.

  60. Lacki, J., H. Ruegg, V. L. Telegdi (1999): “The Road to Stueckelberg’s Covariant Perturbation Theory as Illustrated by Successive Treatments of Compton Scattering,” Studies in History and Philosophy of Modern Physics 30, 457–518.

  61. Langevin, P. (1905): “Magnétisme et théorie des électrons,” Annales de Chimie et de Physique 8e série 5, 70–127.

  62. Lassettre, E. N. and Howe, J. P. (1941): “Thermodynamic Properties of Binary Solid Solutions on the Basis of the Nearest-Neighbor Approximation,” Journal of Chemical Physics 9, 747–754.

    Google Scholar 

  63. Lenz, W. (1920): “Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern,” Physikalische Zeitschrift 21, 613–615.

    Google Scholar 

  64. Liu, C. (1999): “Explaining the Emergence of Cooperative Phenomena,” Philosophy of Science 66, S92-S106.

  65. Longuet-Higgins, H. C. and Fisher, M. E. (1996): “Lars Onsager: 27 November, 1903–5 October, 1976,” in Hemmer, Holden, Kjelstrup Ratkje (1996), pp. 9–34.

  66. Mattis, D. C. (1985): The Theory of Magnetism, Vol. 2. Springer, Berlin.

  67. Maxwell, J. C. (1867): “On the Dynamical Theory of Gases,” Philosophical Transactions of the Royal Society of London 157, 49–88.

  68. McCoy, B. M. and Wu, T. T. (1973): The Two-Dimensional Ising Model. Harvard University Press, Cambridge, Mass.

  69. Mehra, J. and Rechenberg, H. (1982a): The Historical Development of Quantum Theory, Vol. 1. Springer, New York.

  70. Mehra, J. and Rechenberg, H. (1982b): The Historical Development of Quantum Theory, Vol. 3. Springer, New York.

  71. Mills, R. E., Ascher, E., and Jaffee, R. I., eds. (1971): Critical Phenomena in Alloys, Magnets and Superconductors [Battelle Institute Materials Science Colloquia, Geneva and Gstaad, September, 1970], McGraw-Hill, New York.

  72. Montroll, E. W. (1941): “Statistical Mechanics of Nearest Neighbor Systems,” Journal of Chemical Physics 9, 706–721.

    Google Scholar 

  73. Morgan, M. S. and Morrison, M., eds. (1999): Models as Mediators. Cambridge University Press, Cambridge.

  74. Morrison, M. (1999): “Models as Autonomous Agents,” in Morgan and Morrison (1999), pp. 38–65.

  75. Nambu, Y. (1949): “A Note on the Eigenvalue Problem in Crystal Statistics,” Progress in Theoretical Physics 5 1–13.

  76. Newell, G. F. (1950): “Crystal Statistics of a Two-Dimensional Triangular Ising Lattice,” Physical Review 79, 876–882.

    Google Scholar 

  77. Newell, G. F. and Montroll, E. W. (1953): “On the Theory of the Ising Model of Ferromagnetism,” Reviews of Modern Physics 25, 353–389.

    Google Scholar 

  78. Nix, F. C. and Shockley, W. (1938): “Order-Disorder Transformations in Alloys,” Reviews of Modern Physics 10, 1–71.

  79. Nordheim, L. (1934): “Quantentheorie des Magnetismus”. In Müller-Poillet, ed.: Lehrbuch der Physik, Vol. 4. Vieweg, Braunschwieg, pp. 798–876

  80. Onsager, L. (1944): “Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition,” Physical Review 65, 117–149.

    Google Scholar 

  81. Onsager, L. (1971): “Autobiographical Commentary of Lars Onsager,” in Mills, Ascher, and Jaffee (1971), pp. xix–xxiv.

  82. Onsager, L. and Kaufman, B. (1947): “Transition Points,” in Report International Conference on Fundamental Particles and Low Temperatures, Cambridge, July 1946, Vol. 2, The Physical Society, London, pp.137–144.

  83. Pauli, W. (1932): “Les théories quantiques du magnétisme: l’électron magnètique,” in Le Magnétisme. Rapports et discussion du sixièmes conseil de physique tenu à Bruxelles du 20 au 25 Octobre 1930. Insitut International de Physique Solvay. Gauthier-Villars, Paris.

  84. Peierls, R. E. (1934): “Remarks on Transition Temperatures,” Helvetica Physica Acta Supplementum 7 (Suppl. 2), 81–83. Translation by G. Ford from “Bemerkungen über Umwandlungstemperaturen,” in Dalitz and Peierls (1997), pp. 137–138.

  85. Peierls, R. E. (1936a): “Statistical Theory of Adsorption with Interaction between the Adsorbed Atoms,” Proceedings of the Cambridge Philosophical Society 32, 471–476.

  86. Peierls, R. E. (1936b): “On Ising’s Model of Ferromagnetism,” Proceedings of the Cambridge Philosophical Society 32, 477–481.

  87. Peierls, R. E. (1985): Bird of Passage. Recollections of a Physicist. Princeton University Press, Princeton.

  88. Peierls, R. E. with Hoddeson, Lillian (1981): Interview, July 1981, Niels Bohr Library, American Institute of Physics, College Park, Maryland.

  89. Purrington, R. D. (1997): Physics in the Nineteenth Century. Rutgers University Press, New Brunswick, NJ.

  90. Schottky, W. (1922): “Über die Drehung der Atomachsen in festen Körpern. Mit magnetischen, thermischen und chemischen Beziehungen,” Physikalische Zeitschrift 23, 448–455.

    Google Scholar 

  91. Siegel, S. (1951): “Order-Disorder Transitions in Metal Alloys” in R. Smoluchowski, J. E. Mayer and W. A. Weyl, eds., Phase Transformations in Solids [Symposium held at Cornell University, August, 1944], Wiley, New York, pp. 366–387.

  92. Shlesinger, M. F. and Weiss, G. H. (1985): “Elliott W. Montroll (May 4, 1916-December 3, 1983),” in Shlesinger, M. F. and Weiss, G. H., eds., The Wonderful World of Stochastics, North-Holland, Amsterdam, pp 1–15.

  93. Smith, C. and Wise, M. N. (1989): Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge University Press, Cambridge.

  94. Sommerfeld, A. (1948): “Wilhelm Lenz zum 60. Geburtstag am 8. Februar 1948,” Zeitschrift für Naturforschung 3A, 186.

  95. Stern, O. (1920): “Zur Molekulartheorie des Paramagnetismus fester Salze,” Zeitschrift für Physik 1, 147–153.

    Google Scholar 

  96. Stoner, E. C. (1926): Magnetism. Methuen, London.

  97. Stoner, E. C. (1934): Magnetism and Matter. Methuen, London.

  98. Stutz, C. and Williams, B. (1999): “Ernst Ising,” Physics Today 52 (3), 106–108.

  99. Temperley, H. N. V. (1956): Changes of State. Cleaver-Hume, London.

  100. Van Vleck, J. H. (1932): The Theory of Electric and Magnetic Susceptibilies. Oxford University Press, New York.

  101. Van Vleck, J. H. (1945): “A Survey of the Theory of Ferromagnetism,” Reviews of Modern Physics 17, 27–47.

  102. Van Vleck, J. H. (1947): “Quelques aspects de la théorie du magnétisme,” Annales de l’Institut Henri Poincaré 10, 57–190.

    Google Scholar 

  103. Wannier, G. H. (1945): “The Statistical Problem in Cooperative Phenomena,” Reviews of Modern Physics 17, 50–60.

  104. Weiss, G. H. (1994): “Elliott Waters Montroll,” Bibliographical Memoirs of the National Academy of Sciences 63, 364–381.

  105. Weiss, P. (1905): “Les Propriétés magnétiques de la pyrrhotine,” Journal de Physique Théorique et Appliquée 4e série 4, 469–508, 829–846.

    Google Scholar 

  106. Weiss, P. (1907): “L’Hypothèse du champ moléculaire et la propriété ferromagnétique,” Journal de Physique et le Radium 6, 661–690.

    Google Scholar 

  107. Weiss, P. (1911): “Sur la rationalité des rapport des moments magnétique moléculaires et la magnéton,” Journal de Physique 5e série 1, 900–912, 965–988.

    Google Scholar 

  108. Whittaker, E. T. and Watson, G. N. (1927): A Course of Modern Analysis, Fourth Edition. Cambridge University Press, London.

  109. Wolf, W. P. (2000): “The Ising Model and Real Magnetic Materials”. Brazilian Journal of Physics 30, 794–810.

    Google Scholar 

  110. Yang, C. N. (1952): “The Spontaneous Magnetization of a Two-Dimensional Ising Model,” Physical Review 85, 808–816.

    Google Scholar 

  111. Zwicky, F. (1933): “On Cooperative Phenomena,” Physical Review 42, 270–278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Niss.

Additional information

Communicated by R. H. Stuewer

Acknowledgment I thank Jeppe C. Dyre, Tinne Hoff Kjeldsen, Helge Kragh, Andrea Loettgers, Mogens Niss, and an anonymous reader for their helpful comments on drafts of my paper, and Roger H. Stuewer for his thoughtful and careful editorial work on it.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niss, M. History of the Lenz-Ising Model 1920–1950: From Ferromagnetic to Cooperative Phenomena. Arch. Hist. Exact Sci. 59, 267–318 (2005). https://doi.org/10.1007/s00407-004-0088-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-004-0088-3

Keywords

Navigation