Skip to main content

Advertisement

Log in

Isolation, culture optimization and functional characterization of stem cell neurospheres from mouse neonatal olfactory bulb and epithelium

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The olfactory epithelium contains basal cells with stem cell characteristics, which have the capacity to differentiate throughout life into olfactory receptor neurons (ORNs). Here we investigate the in vitro characteristics of stem cells taken from the olfactory bulb (OB) and the olfactory epithelium (OE) of neonatal TIS21 knock-in mice. The major aim of the study was the generation of olfactory neurospheres (ONS) derived from OB and OE of neonatal mice as a tool to further analyze the elementary processes of ORN development. Our data showed that the presence of epidermal growth factor (EGF) and fibroblast growth factor (FGF) leads to a significant increase in number of ONS derived from OB but not from OE. The differentiation of ONSs led to the formation of different neuronal cell types, in particular to bipolar-shaped cells as well as putative pyramidal-neurons, astrocytes and oligodendrocytes. Immunohistochemical staining confirmed the presence of astrocytes and neurons in both types of ONSs. In order to investigate the functionality of the neurons we performed calcium imaging and patch-clamp experiments. Calcium imaging experiments revealed that the application of high potassium concentration provokes calcium transients. No excitable properties, neither sodium currents nor action potentials, were observed for the bipolar-shaped cells derived from OB and OE neurospheres, which means that these types of cells morphologically defined as putative neuronal cells, were not physiologically active. Interestingly, patch-clamp recordings performed in the pyramidal-shaped cells of OB neurospheres showed sodium and potassium currents as well as action potentials. Our study will help to establish further models in the field of olfactology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anchan RM, Drake DP, Haines CF et al (1997) Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway. J Comp Neurol 379:171–184

    Article  CAS  PubMed  Google Scholar 

  2. Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406

    Article  CAS  PubMed  Google Scholar 

  3. Barber RD, Jaworsky DE, Yau KW et al (2000) Isolation and in vitro differentiation of conditionally immortalized murine olfactory receptor neurons. J Neurosci 20:3695–3704

    CAS  PubMed  Google Scholar 

  4. Barish ME (1986) Differentiation of voltage-gated potassium current and modulation of excitability in cultured amphibian spinal neurones. J Physiol 375:229–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barraud P, He X, Zhao C et al (2007) Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. Eur J Neurosci 26:3345–3357

    Article  PubMed  Google Scholar 

  6. Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    Article  CAS  PubMed  Google Scholar 

  7. Calegari F, Haubensak W, Haffner C et al (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25:6533–6538

    Article  CAS  PubMed  Google Scholar 

  8. Carter LA (2004) Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci 24:5670–5683

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Fang H, Schwob JE (2004) Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 469:457–474

    Article  PubMed  Google Scholar 

  10. Ciccolini F, Svendsen CN (1998) Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci Off J Soc Neurosci 18:7869–7880

    CAS  Google Scholar 

  11. Dehamer MK, Guevara JL, Hannon K et al (1994) Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13:1083–1097

    Article  CAS  PubMed  Google Scholar 

  12. Doyle KL, Khan M, Cunningham AM (2001) Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J Comp Neurol 437:186–195

    Article  CAS  PubMed  Google Scholar 

  13. Farbman AI, Buchholz JA (1996) Transforming growth factor-alpha and other growth factors stimulate cell division in olfactory epithelium in vitro. J Neurobiol 30:267–280

    Article  CAS  PubMed  Google Scholar 

  14. Getchell TV, Narla RK, Little S et al (2000) Horizontal basal cell proliferation in the olfactory epithelium of transforming growth factor-α transgenic mice. Cell Tissue Res 299:185–192

    CAS  PubMed  Google Scholar 

  15. Ghiani CA, Yuan X, Eisen AM et al (1999) Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci Off J Soc Neurosci 19:5380–5392

    CAS  Google Scholar 

  16. Hatt H, Gisselmann G, Wetzel CH (1999) Cloning, functional expression and characterization of a human olfactory receptor. Cell Mol Biol (Noisy-le-grand) 45:285–291

    CAS  Google Scholar 

  17. Haubensak W, Attardo A, Denk W et al (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu P, Yu F, Feron F et al (2001) Basic fibroblast growth factor and fibroblast growth factor receptors in adult olfactory epithelium. Brain Res 896:188–197

    Article  CAS  PubMed  Google Scholar 

  19. Huard JM, Youngentob SL, Goldstein BJ et al (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400:469–486

    Article  CAS  PubMed  Google Scholar 

  20. Iacopetti P (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci 96:4639–4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iwai N, Zhou Z, Roop DR et al (2008) Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26:1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jang W, Lambropoulos J, Woo JK et al (2008) Maintaining epitheliopoietic potency when culturing olfactory progenitors. Exp Neurol 214:25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jang W, Youngentob SL, Schwob JE (2003) Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 460:123–140

    Article  PubMed  Google Scholar 

  24. Jat PS, Noble MD, Ataliotis P et al (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci USA 88:5096–5100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    Article  CAS  PubMed  Google Scholar 

  26. Klaassen I, Brakenhoff RH, Smeets SJ et al (1999) Considerations for in vitro retinoid experiments: importance of protein interaction. Biochim Biophys Acta 1427:265–275

    Article  CAS  PubMed  Google Scholar 

  27. Krezel W, Kastner P, Chambon P (1999) Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89:1291–1300

    Article  CAS  PubMed  Google Scholar 

  28. Krolewski RC, Jang W, Schwob JE (2011) The generation of olfactory epithelial neurospheres in vitro predicts engraftment capacity following transplantation in vivo. Exp Neurol 229:308–323

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10:720–726

    Article  CAS  PubMed  Google Scholar 

  30. Liebau S, Propper C, Bockers T et al (2006) Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. J Neurochem 99:426–437

    Article  CAS  PubMed  Google Scholar 

  31. Mackay-Sim A (2010) Stem cells and their niche in the adult olfactory mucosa. Arch Ital Biol 148:47–58

    CAS  PubMed  Google Scholar 

  32. Mahanthappa NK, Schwarting GA (1993) Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro: roles of EGF and TGF-beta s. Neuron 10:293–305

    Article  CAS  PubMed  Google Scholar 

  33. Murrell W, Féron F, Wetzig A et al (2005) Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233:496–515

    Article  PubMed  Google Scholar 

  34. Murrell W, Wetzig A, Donnellan M et al (2008) Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells 26:2183–2192

    Article  CAS  PubMed  Google Scholar 

  35. Newman MP, Feron F, Mackay-Sim A (2000) Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 99:343–350

    Article  CAS  PubMed  Google Scholar 

  36. Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19:285–292

    Article  CAS  Google Scholar 

  37. Sharow KA, Temkin B, Asson-Batres MA (2012) Retinoic acid stability in stem cell cultures. Int J Dev Biol 56:273–278

    Article  CAS  PubMed  Google Scholar 

  38. Szuts EZ, Harosi FI (1991) Solubility of retinoids in water. Arch Biochem Biophys 287:297–304

    Article  CAS  PubMed  Google Scholar 

  39. Tome M, Lindsay SL, Riddell JS et al (2009) Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells 27:2196–2208

    Article  CAS  PubMed  Google Scholar 

  40. Tropepe V, Sibilia M, Ciruna BG et al (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188

    Article  CAS  PubMed  Google Scholar 

  41. Wang TW, Zhang H, Parent JM (2005) Retinoic acid regulates postnatal neurogenesis in the murine subventricular zone-olfactory bulb pathway. Development 132:2721–2732

    Article  CAS  PubMed  Google Scholar 

  42. Wetzig A, Mackay-Sim A, Murrell W (2011) Characterization of olfactory stem cells. Cell Transplant 20:1673–1691

  43. Wohl CA, Weiss S (1998) Retinoic acid enhances neuronal proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors. J Neurobiol 37:281–290

    Article  CAS  PubMed  Google Scholar 

  44. Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107

    Article  CAS  PubMed  Google Scholar 

  45. Zetterstrom RH, Lindqvist E, Mata De Urquiza A et al (1999) Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur J Neurosci 11:407–416

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Minovi.

Ethics declarations

Funding

This work was supported by Grants from Ruhr-University of Bochum, Medical Faculty (FoRUM) reg. number (F596-2007, F691-09).

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minovi, A., Aguado, A., Brunert, D. et al. Isolation, culture optimization and functional characterization of stem cell neurospheres from mouse neonatal olfactory bulb and epithelium. Eur Arch Otorhinolaryngol 274, 3071–3085 (2017). https://doi.org/10.1007/s00405-017-4590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-017-4590-z

Keywords

Navigation