Skip to main content
Log in

Variability of the mental representation of the cochlear anatomy during cochlear implantation

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the mental representation of the insertion axis of surgeons with different degrees of experience, and reproducibility of the insertion axis in repeated measures. A mastoidectomy and a posterior tympanotomy were prepared in five different artificial temporal bones. A cone-beam CT was performed for each temporal bone and the data were registered on a magnetic navigation system. In these five temporal bones, 16 surgeons (3 experts; >50 cochlear implant surgery/year; 7 fellows with few cochlear implant experience, and 6 residents) were asked to determine the optimal insertion axis according to their mental representation. Compared to a planned ideal axis, the insertion axis was better determined by the experts with higher accuracy (axial: 7° ± 1.5°, coronal: 6° ± 1.5°) than fellows (axial: 14° ± 1.7°, coronal: 13° ± 1.7°; p < 0.05), or residents (axial: 15° ± 1.5°; p < 0.001, coronal: 17° ± 1.9°; p < 0.001). This study suggests that mental representation of the cochlea is experience-dependent. A high variation of the insertion axis to the scala tympani can be observed due to the complexity of the temporal bone anatomy and lack of landmarks to determine scala tympani orientation. Navigation systems can be used to evaluate and improve mental representation of the insertion axis to the scala tympani for cochlear implant surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berrettini S, Forli F, Passetti S (2008) Preservation of residual hearing following cochlear implantation: comparison between three surgical techniques. J Laryngol Otol 122:246–252

    Article  CAS  PubMed  Google Scholar 

  2. Helbig S, Van de Heyning P, Kiefer J, Baumann U, Kleine-Punte A, Brockmeier H et al (2011) Combined electric acoustic stimulation with the PULSARCI(100) implant system using the FLEX(EAS) electrode array. Acta Otolaryngol (Stockh) 131:585–595

    Article  Google Scholar 

  3. Venail F, Mathiolon C, Menjot S, Piron JP, Sicard M, Villemus F et al (2015) Effects of electrode array length on frequency-place mismatch and speech perception with cochlear implants. Audiol Neurotol. 20:102–111

    Article  Google Scholar 

  4. Nguyen Y, Mosnier I, Borel S, Ambert-Dahan E, Bouccara D, Bozorg-Grayeli A et al (2013) Evolution of electrode array diameter for hearing preservation in cochlear implantation. Acta Otolaryngol (Stockh) 133:116–122

    Article  Google Scholar 

  5. Adunka OF, Dillon MT, Adunka MC, King ER, Pillsbury HC, Buchman CA (2014) Cochleostomy versus round window insertions: influence on functional outcomes in electric-acoustic stimulation of the auditory system. Otol Neurotol 35:613–618

    Article  PubMed  Google Scholar 

  6. Escude B, James C, Deguine O, Cochard N, Eter E, Fraysse B (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol 11:27–33

    Article  Google Scholar 

  7. Erixon E, Högstorp H, Wadin K, Rask-Andersen H (2009) Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol 30:14–22

    Article  PubMed  Google Scholar 

  8. Martinez-Monedero R, Niparko JK, Aygun N (2011) Cochlear coiling pattern and orientation differences in cochlear implant candidates. Otol Neurotol 32:1086–1093

    Article  PubMed  Google Scholar 

  9. Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A (2014) Variations in microanatomy of the human cochlea. J Comp Neurol 522:3245–3261

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meshik X, Holden TA, Chole RA, Hullar TE (2010) Optimal cochlear implant insertion vectors. Otol Neurotol 31:58–63

    Article  PubMed  PubMed Central  Google Scholar 

  11. Breinbauer HA, Praetorius M (2015) Variability of an ideal insertion vector for cochlear implantation. Otol Neurotol 36:610–617

    Article  PubMed  Google Scholar 

  12. Roosli C, Sim JH, Möckel H, Mokosch M, Probst R (2013) An artificial temporal bone as a training tool for cochlear implantation. Otol Neurotol 34:1048–1051

    Article  PubMed  Google Scholar 

  13. Bakhos D, Velut S, Robier A, Alzahrani M, Lescanne E (2010) Three-dimensional modeling of the temporal bone for surgical training. Otol Neurotol 31:328–334

    Article  PubMed  Google Scholar 

  14. Verbist BM, Skinner MW, Cohen LT, Leake PA, James C, Boëx C et al (2010) Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 31:722–730

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nguyen Y, Miroir M, Vellin J-F, Mazalaigue S, Bensimon J-L, Bernardeschi D et al (2011) Minimally invasive computer-assisted approach for cochlear implantation: a human temporal bone study. Surg Innov 18:259–267

    Article  PubMed  Google Scholar 

  16. Bozorg A, Esquia-Medina G, Nguyen Y, Mazalaigue S, Vellin J-F, Lombard B et al (2009) Use of anatomic or invasive markers in association with skin surface registration in image-guided surgery of the temporal bone. Acta Otolaryngol (Stockh) 129:405–410

    Article  Google Scholar 

  17. Bernardeschi D, Nguyen Y, Villepelet A, Ferrary E, Mazalaigue S, Kalamarides M et al (2013) Use of bone anchoring device in electromagnetic computer-assisted navigation in lateral skull base surgery. Acta Otolaryngol (Stockh) 133:1047–1052

    Article  Google Scholar 

  18. Li PMMC, Wang H, Northrop C, Merchant SN, Nadol JB (2007) Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures. Otol Neurotol 28:641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Franz BK, Clark GM, Bloom DM (1987) Surgical anatomy of the round window with special reference to cochlear implantation. J Laryngol Otol 101:97–102

    Article  CAS  PubMed  Google Scholar 

  20. Basura GJ, Adunka OF, Buchman CA (2010) Scala tympani cochleostomy for cochlear implantation. Oper Tech Otolaryngol-Head Neck Surg 21:218–222

    Article  Google Scholar 

  21. Briggs RJS, Tykocinski M, Xu J, Risi F, Svehla M, Cowan R et al (2006) Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Audiol Neurotol 11:42–48

    Article  Google Scholar 

  22. Havenith S, Lammers MJW, Tange RA, Trabalzini F, della Volpe A, van der Heijden GJMG et al (2013) Hearing preservation surgery: cochleostomy or round window approach? A systematic review. Otol Neurotol 34:667–674

    Article  PubMed  Google Scholar 

  23. Adunka O, Kiefer J, Unkelbach MH, Radeloff A, Gstoettner W (2005) Evaluating cochlear implant trauma to the scala vestibuli. Clin Otolaryngol 30:121–127

    Article  CAS  PubMed  Google Scholar 

  24. Iseli C, Adunka OF, Buchman CA (2014) Scala tympani cochleostomy survey: a follow-up study. Laryngoscope 124:1928–1931

    Article  PubMed  Google Scholar 

  25. Vision Marr D (2010) A computational investigation into the human representation and processing of visual information. MIT Press, Cambridge

    Google Scholar 

  26. Sternberg RJ, Mio JS (2009) Cognitive psychology. Cengage Learning/Wadsworth, Australia

    Google Scholar 

  27. DesCôteaux JG, Leclère H (1995) Learning surgical technical skills. Can J Surg 38:33–38

    PubMed  Google Scholar 

  28. Wang RF, Spelke ES (2003) Comparative approaches to human navigation. In: Jeffery KJ (ed) The neurobiology of spatial behaviour, 1st edn. Oxford University Press, Oxford, pp 119–143

    Chapter  Google Scholar 

  29. Broadbent HJ, Farran EK, Tolmie A (2014) Egocentric and allocentric navigation strategies in Williams syndrome and typical development. Dev Sci 17:920–934

    Article  PubMed  Google Scholar 

  30. Avraamides MN, Loomis JM, Klatzky RL, Golledge RG (2004) Functional equivalence of spatial representations derived from vision and language: evidence from allocentric judgments. J Exp Psychol Learn Mem Cogn 30:804–814

    Article  PubMed  Google Scholar 

  31. Ang SY, Lee K (2008) Central executive involvement in children’s spatial memory. Memory 16:918–933

    Article  PubMed  Google Scholar 

  32. Trier P, Noe K, Sørensen MS, Mosegaard J (2008) The visible ear surgery simulator. Stud Health Technol Inform 132:523–525

    PubMed  Google Scholar 

  33. Arora A, Khemani S, Tolley N, Singh A, Budge J, Varela D et al (2012) Face and content validation of a virtual reality temporal bone simulator. Otolaryngol-Head Neck Surg 146:497–503

    Article  PubMed  Google Scholar 

  34. O’Leary SJ, Hutchins MA, Stevenson DR, Gunn C, Krumpholz A, Kennedy G et al (2008) Validation of a networked virtual reality simulation of temporal bone surgery. Laryngoscope 118:1040–1046

    Article  PubMed  Google Scholar 

  35. Miroir M, Nguyen Y, Kazmitcheff G, Ferrary E, Sterkers O, Bozorg A (2012) Friction force measurement during cochlear implant insertion: application to a force-controlled insertion tool design. Otol Neurotol 33:1092–1100

    PubMed  Google Scholar 

  36. Nguyen Y, Miroir M, Kazmitcheff G, Sutter J, Bensidhoum M, Ferrary E et al (2012) Cochlear implant insertion forces in microdissected human cochlea to evaluate a prototype array. Audiol Neurotol 17:290–298

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the surgeons for their participation in this evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, R., Kazmitcheff, G., Bernardeschi, D. et al. Variability of the mental representation of the cochlear anatomy during cochlear implantation. Eur Arch Otorhinolaryngol 273, 2009–2018 (2016). https://doi.org/10.1007/s00405-015-3763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-015-3763-x

Keywords

Navigation