Skip to main content
Log in

Estimation of insertion depth angle based on cochlea diameter and linear insertion depth: a prediction tool for the CI422

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Beside the cochlear size, the linear insertion depth (LID) influences the insertion depth angle of cochlear implant electrode arrays. For the specific implant CI422 the recommended LID is not fixed but can vary continuously between 20 and 25 mm. In the current study, the influence of cochlea size and LID on the final insertion depth angle was investigated to develop a prediction tool for the insertion depth angle by means of cochlea diameter and LID. Preoperative estimation of insertion depth angles might help surgeons avoid exceeding an intended insertion depth, especially with respect to low-frequency residual hearing preservation. Postoperative, high-resolution 3D-radiographs provided by Flat Panel Computed Volume Tomography (FPCT) were used to investigate the insertion depth angle in 37 CI422 recipients. Furthermore, the FPCT images were used to measure linear insertion depth and diameter of the basal turn of the cochlea. A considerable variation of measured insertion depth angles ranging from 306° to 579° was identified. The measured linear insertion depth ranged from −18.6 to 26.2 mm and correlated positively with the insertion depth angle. The cochlea diameter ranged from 8.11 to 10.42 mm and correlated negatively with the insertion depth angle. The results suggest that preoperatively measured cochlea diameter combined with the option of different array positions by means of LID may act as predictors for the final insertion depth angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Erixon E, Högstorp H, Wadin K, Rask-Anderson H (2008) Variational anatomy of human cochlea: implications for cochlear implantation. Otol Neurotol 30:14–22

    Article  Google Scholar 

  2. Kawano A, Seldon HL, Clark GM (1996) Computer aided three-dimensional construction in human cochlear maps: measurement of the lengths of organ of Corti outer wall, inner wall and Rosenthal`s canal. Ann Otol Rhinol Laryngol 105:701–709

    Article  CAS  PubMed  Google Scholar 

  3. Hardy M (1938) The length of the organ of corti in man. Am J Anat 62:291–311

    Article  Google Scholar 

  4. Ketten DR, Skinner MW, Wang GE, Vannier MW, Gates GA, Neely JG (1998) In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol 175(suppl):1–16

    CAS  Google Scholar 

  5. Trieger A, Schulze A, Schneider A, Zahnert T, Mürbe D (2010) In vivo measurements of the insertion depth of cochlear implant arrays using flat panel volume computed tomography. Otol Neurotol 32:152–157

    Article  Google Scholar 

  6. Escudé B, James C, Deguine O, Cochard N, Eter E, Fraysse B (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol 11:27–33

    Article  Google Scholar 

  7. Franke-Trieger A, Jolly C, Darbinjan A, Zahnert T, Mürbe D (2013) Insertion depth angles of cochlear implant arrays with varying length: a temporal bone study. Otol Neurotol 35(1):58–63

    Article  Google Scholar 

  8. Skarzynski H, Lorens A, Piotrowska A (2003) A new method of partial deafness treatment. Med Sci Monit 9:CS20–CS24

    PubMed  Google Scholar 

  9. Gstoettner W, Kiefer J, Baumgartner WD, Pok S, Peters S, Adunka O (2004) Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol 124:348–352

    Article  PubMed  Google Scholar 

  10. Skarzynski H, Lorens A, Matusiak M, Porowski M, Skarzynski PH, James CJ (2012) Partial deafness treatment with the Nucleus straight research array cochlear implant. Audiol Neurotol 17:82–91

    Article  Google Scholar 

  11. James C, Albegger K, Battmer R et al (2005) Preservation of residual hearing with cochlear implantation: how and why. Acta Otolaryngol 125:481–491

    Article  PubMed  Google Scholar 

  12. Skarzynski H, Lorens A, Matusiak M, Porowski M, Skarzynski PH, James CJ (2014) Cochlear implantation with the nucleus slim straight electrode in subjects with residual low-frequency hearing. Ear Hear 35(2):e33–e43

    Article  PubMed  Google Scholar 

  13. Adunka O, Kiefer J (2006) Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg 135:374–382

    Article  PubMed  Google Scholar 

  14. Finley CC, Skinner MW (2008) Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol 29:920–928

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yukawa K, Cohen L, Blamey P, Pyman B, Tungvachirakul V, O`Leary S (2004) Effects of insertion depth of cochlear implant electrode upon speech perception. Audiol Neurootol 9:163–172

    Article  PubMed  Google Scholar 

  16. Skinner MW, Ketten DR, Holden LK et al (2002) CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol 3:332–350

    Article  PubMed Central  PubMed  Google Scholar 

  17. Holden LK, Finley CC, Firszt JB et al (2013) Factors affecting open-set word recognition in adults with cochlear implants. Ear and hear 34(3):342

    Article  Google Scholar 

  18. Khan AM, Handzel O, Burgess BJ, Damian D, Eddington DK, Nadol JB (2005) Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope 115:672–677

    Article  PubMed  Google Scholar 

  19. Lee J, Nadol JB Jr, Eddington DK (2010) Depth of electrode insertion and postoperative performance in humans with cochlear implants: a histopathologic study. Audiol Neurotol 15:323–331

    Article  Google Scholar 

  20. Xu J, Xu SA, Cohen LT, Clark GM (2000) Cochlear view: postoperative radiography for cochlear implantation. AM J Otol 21:49–56

    Article  CAS  PubMed  Google Scholar 

  21. Verbist BM, Skinner MW, Cohen LT et al (2010) Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol 31:722–730

    Article  PubMed Central  PubMed  Google Scholar 

  22. Martinez-Monedero R, Niparko JK, Aygun N (2011) Cochlear coiling differences in cochlear implant candidates. Otol Neurotol 32:1086–1093

    Article  PubMed  Google Scholar 

  23. Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol (Stockh) 236(suppl):1–138

    Google Scholar 

  24. Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605

    Article  CAS  PubMed  Google Scholar 

  25. Cohen LT, Xu J, Xu SA, Clark GM (1996) Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array. Am J Otol 17:859–865

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. H. Hessel for constructive comments on the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Franke-Trieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franke-Trieger, A., Mürbe, D. Estimation of insertion depth angle based on cochlea diameter and linear insertion depth: a prediction tool for the CI422. Eur Arch Otorhinolaryngol 272, 3193–3199 (2015). https://doi.org/10.1007/s00405-014-3352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-3352-4

Keywords

Navigation