Skip to main content
Log in

DNA damage in spermatozoa from infertile men with varicocele evaluated by sperm chromatin dispersion and DBD-FISH

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of DNA integrity is an important test, possessing greater diagnostic and prognostic significance for couples requiring assisted reproduction. In this study, we evaluate the levels of DNA damage in infertile patients with varicocele with respect to fertile males by the sperm chromatin dispersion (SCD) test. The presence of DNA breaks in spermatozoa was confirmed by DNA breakage detection-fluorescence in situ hybridization (DBD-FISH).

Methods

In this study, the frequency of sperm cells with fragmented DNA was studied in a group of 20 infertile patients with varicocele and compared with 20 fertile males. The spermatozoa were processed to classify different levels of DNA fragmentation using the Halosperm® kit, an improved SCD test, and DBD-FISH.

Results

Patients with varicocele showed 25.54 ± 28.17 % of spermatozoa with fragmented DNA, significantly higher than those of the group of fertile subjects (11.54 ± 3.88 %). The proportion of degraded cells in total sperm cells with fragmented DNA was sixfold higher in the case of patients with varicocele. The presence of DNA breaks in spermatozoa was confirmed by DBD-FISH. 5-bp Classical satellite-2 regions showed greater sensitivity to damage or “breakage” than alphoid satellite regions.

Conclusions

Our finding preliminary demonstrated an increase of DNA fragmentation associated to severe sperm damage, in infertile patients with varicocele with respect to fertile males. 5-bp Classical satellite-2 regions showed greater sensitivity to damage or “breakage” than alphoid satellite regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (1992) The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. Fertil Steril 57:1289–1293

    Google Scholar 

  2. Evers JL, Collins JA (2003) Assessment of efficacy of varicocele repair for male subfertility: a systematic review. Lancet 361:1849

    Article  PubMed  Google Scholar 

  3. Agarwal A, Hamada A, Esteves SC (2012) Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 9:678–690

    Article  PubMed  CAS  Google Scholar 

  4. Zini A, Dohle G (2011) Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril 96:1283–1287

    Article  PubMed  CAS  Google Scholar 

  5. Peluso G, Palmieri A, Cozza PP et al (2013) The study of spermatic DNA fragmentation and sperm motility in infertile subjects. Arch Ital Urol Nefrol Androl 85:8–13

    Article  Google Scholar 

  6. Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93:1027–1036

    Article  PubMed  CAS  Google Scholar 

  7. Gosálvez J, Rodríguez-Predreira M, Mosquera A, López-Fernández C, Esteves SC, Agarwal A et al (2014) Characterisation of a subpopulation of sperm with massive nuclear damage, as recognised with the sperm chromatin dispersion test. Andrologia 46:602–609

    Article  PubMed  CAS  Google Scholar 

  8. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas AJ Jr (2003) Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril 80:1431–1436

    Article  PubMed  Google Scholar 

  9. Chen C, Lee S, Chen D, Chien H, Chen I, Chu Y et al (2004) Apoptosis and kinematics of ejaculated spermatozoa in patients with varicocele. J Andro 25:348–353

    Article  Google Scholar 

  10. Fernández JL, Muriel L, Rivero MT, Goyanes V, Vázquez R, Álvarez JG (2003) The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl 24:59–66

    Article  PubMed  Google Scholar 

  11. Fernández JL, Lourdes M, Goyanes VJ, Segrelles E, Gosálvez J, Enciso M et al (2005) Simple determination of sperm DNA fragmentation with an improved sperm chromatin dispersion (SCD) test. Fertil Steril 84:833–842

    Article  PubMed  CAS  Google Scholar 

  12. Fernández JL, Gosálvez J (2002) Application of FISH to detect DNA damage. DNA breakage detection-FISH (DBD-FISH). Methods Mol Biol 203:203–216

    PubMed  Google Scholar 

  13. Fernández JL, Vázquez-Gundín F, Delgado A, Goyanes VJ, Ramiro-Díaz J, de la Torre J et al (2000) DNA breakage detection-FISH (DBD-FISH) in human spermatozoa: technical variants evidence different structural features. Mutat Res 45:77–82

    Article  Google Scholar 

  14. Fernández JL, Goyanes VJ, Ramiro-Díaz J, Gosálvez J (1998) Application of FISH for in situ detection and quantification of DNA breakage. Cytogenet Cell Genet 82:251–256

    Article  PubMed  Google Scholar 

  15. Hull MG (1992) Infertility treatment: relative effectiveness of conventional and assisted conception methods. Hum Reprod 7:785–796

    PubMed  CAS  Google Scholar 

  16. Shamsi MB, Kumar R, Bhatt A, Bamezai RN, Kumar R, Gupta NP et al (2008) Mitochondrial DNA Mutations in etiopathogenesis of male infertility. Indian J Urol 24:150–154

  17. Cooper TG, Noonan E, von Eckardstein S, Auger J, Gordon Baker HW, Behre HM et al (2010) World Health Organization reference values for human semen characteristics Hum Reprod Update 16:231–245

  18. Santiso R, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Fernández JL (2007) Evidence of modified nuclear protein matrix in human spermatozoa with fragmented deoxyribonucleic acid. Fertil Steril 87:191–194

    Article  PubMed  CAS  Google Scholar 

  19. Turkyilmaz Z, Gulen S, Sonmez K, Karabulut R, Dincer S, Can Basaklar A, Kale N (2004) Increased nitric oxide is accompanied by lipid oxidation in adolescent varicocele. Int J Androl 27:183–187

    Article  PubMed  Google Scholar 

  20. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843

    Article  PubMed  Google Scholar 

  21. Barbieri ER, Hidalgo ME, Venegas A, Smith R, Lissi EA (1999) Varicocele associated decrease in antioxidant defenses. J Androl 20:713–717

  22. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A (1999) Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol 161:1831–1834

    Article  PubMed  CAS  Google Scholar 

  23. Enciso M, Muriel L, Fernández JL, Goyanes V, Segrelles E, Marcos M et al (2006) Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion test. J Androl 27:106–111

    Article  PubMed  Google Scholar 

  24. Ribas-Maynou J, García-Peiro A, Abad C, Amengual MJ, Navarro J, Benet J (2012) Alkaline and neutral Comet assay profiles of sperm DNA damage in clinical groups. Hum Reprod 27:652–658

    Article  PubMed  CAS  Google Scholar 

  25. Sonntag V (1987) The chemical basis of radiation biology. Taylor and Francis, New York

    Google Scholar 

  26. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation and disease. FASEB J 17:1195–1214

    Article  PubMed  CAS  Google Scholar 

  27. García-Peiró A, Oliver-Bonet M, Navarro J, Abad C, Amengual MJ, López-Fernández C, Gosálvez J, Benet J (2012) Differential clustering of sperm subpopulations in infertile males with clinical varicocele and carriers of rearranged genomes. J Androl 33:361–367

    Article  PubMed  CAS  Google Scholar 

  28. de Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26:202–226

    Article  PubMed  Google Scholar 

  29. Von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  30. Rivero MT, Mosquera A, Goyanes V, Slijepcevic P, Fernández JL (2004) Differences in repair profiles of interstitial telomeric sites between normal and DNA double-strand ALS in mammalian sperm break repair deficient Chinese hamster cells. Exp Cell Res 295:161–172

    Article  PubMed  CAS  Google Scholar 

  31. Darzynkiewicz Z, Huang X, Okafuji M (2006) Detection of DNA strand breaks by flow and laser scanning cytometry in studies of apoptosis and cell proliferation (DNA replication). Methods Mol Biol 314:81–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mitropoulos D, Deliconstantinos G, Zervas A, Villiotou V, Dimopoulos C, Stavrides J (1996) Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: a potential role for nitric oxide and peroxynitrite in sperm dysfunction. J Urol 156:1952–1958

    Article  PubMed  CAS  Google Scholar 

  33. Romeo C, Ientile R, Santoro G, Impellizzeri P, Turiaco N, Impala P et al (2001) Nitric oxide production is increased in the spermatic veins of adolescents with left idiopathic varicocele. J Pediatr Surg 36:389–393

    Article  PubMed  CAS  Google Scholar 

  34. Ollero M, Gil-Guzmán E, Sharma RK, López MC, Larson KL, Evenson DP et al (2001) Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod 16:1912–1921

    Article  PubMed  CAS  Google Scholar 

  35. Zini A, Defreitas G, Freeman M, Hechter S, Jarvi K (2000) Varicocele is associated with abnormal retention of cytoplasmic droplets by human spermatozoa. Fertil Steril 74:461–464

    Article  PubMed  CAS  Google Scholar 

  36. Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R et al (2007) Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci USA 104:6852–6857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tarozzi N, Nadalini M, Stronati A, Bizzaro D, Dal Prato L, Coticchio G, Borini A (2009) Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online 18:486–495

  38. Cho C1, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM (2001) Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28:82–86

  39. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JBM, Carrell DT (2005) DNA integrity is compromised in protamine-deficient human sperm J Androl 26:741–748

    PubMed  CAS  Google Scholar 

  40. García-Peiró A, Martínez-Heredia J, Oliver-Bonet M, Abad C, Amengual MJ, Navarro J, Jones C et al (2011) Protamine 1 to protamine 2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril 95:105–109

    Article  PubMed  CAS  Google Scholar 

  41. Allamaneni SS, Naughton CK, Sharma RK, Thomas AJ Jr, Agarwal A (2004) Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril 82:1684–1686

    Article  PubMed  Google Scholar 

  42. Zini A, Blumenfeld A, Libman J, Willis J (2005) Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod 20:1018–1021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elva I. Cortés-Gutiérrez.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés-Gutiérrez, E.I., Dávila-Rodríguez, M.I., Fernández, J.L. et al. DNA damage in spermatozoa from infertile men with varicocele evaluated by sperm chromatin dispersion and DBD-FISH. Arch Gynecol Obstet 293, 189–196 (2016). https://doi.org/10.1007/s00404-015-3822-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3822-y

Keywords

Navigation