Skip to main content

Advertisement

Log in

Epithelial–mesenchymal interaction during photodynamic therapy-induced photorejuvenation

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Recently, several clinical studies reported that the photodynamic therapy (PDT) has photorejuvenation effects on the aged skin. Previously, our group introduced evidence of direct effect of PDT on cultured fibroblast (FB). PDT directly stimulated FBs and induced collagen synthesis through activation of extracellular signal–regulated kinase. In this study, we investigated indirect effect of PDT on the human dermal FB during photorejuvenation focused on the epithelial–mesenchymal interaction between keratinocyte (KC) and FB. The “low-level PDT” condition was used for PDT therapy to the cultured KC. Various kinds of cytokines in the supernatants of KC were evaluated by enzyme-linked immunosorbent assay. FBs were stimulated with the KC-conditioned medium (KCM) taken after PDT. The mRNA level of matrix metalloproteinases (MMPs), transforming growth factor (TGF)-β and collagen type Iα in the FB, was determined by real-time polymerase chain reaction. Clinical phtorejuvenation effect was also evaluated from nine patients who had PDT to treat actinic keratoses. Among the FB-stimulating cytokines, a significant elevation of interleukin (IL)-1α, IL-6, and tumor necrosis factor-α level in KCM was noted after PDT compared with controls. After stimulating FB with KCM, the mRNA of MMP-1 was decreased and the mRNA of collagen type Iα was increased compare to control. Clinically, fine wrinkles significantly reduced after PDT. However, coarse wrinkles were not recovered significantly. In conclusion, increased collagen synthesis may be mediated not only by direct effect of PDT on FB but also by indirect effect of PDT on FB through cytokines from KC, such as IL-1α, IL-6, and tumor necrosis factor-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dover JS, Bhatia AC, Stewart B, Arndt KA (2005) Topical 5-aminolevulinic acid combined with intense pulsed light in the treatment of photoaging. Arch Dermatol 141:1247–1252. doi:10.1001/archderm.141.10.1247

    Article  PubMed  Google Scholar 

  2. Ghaffari A, Kilani RT, Ghahary A (2009) Keratinocyte-conditioned media regulate collagen expression in dermal fibroblasts. J Invest Dermatol 129:340–347. doi:10.1038/jid.2008.253

    Article  CAS  PubMed  Google Scholar 

  3. Gold MH, Bradshaw VL, Boring MM, Bridges TM, Biron JA (2006) Split-face comparison of photodynamic therapy with 5-aminolevulinic acid and intense pulsed light versus intense pulsed light alone for photodamage. Dermatol Surg 32:795–801. doi:10.1111/j.1524-4725.2006.32163 (discussion 801803)

  4. Griffiths CE, Wang TS, Hamilton TA, Voorhees JJ, Ellis CN (1992) A photonumeric scale for the assessment of cutaneous photodamage. Arch Dermatol 128:347–351. doi:10.1001/archderm.1992.01680200118025

    Article  CAS  PubMed  Google Scholar 

  5. Harrison CA, Dalley AJ, Mac Neil S (2005) A simple in vitro model for investigating epithelial/mesenchymal interactions: keratinocyte inhibition of fibroblast proliferation and fibronectin synthesis. Wound Repair Regen 13:543–550. doi:10.1111/j.1524-475X.2005.00076.x

    Article  PubMed  Google Scholar 

  6. Jang YH, Koo GB, Kim JY, Kim YS, Kim YC (2013) Prolonged activation of ERK contributes to the photorejuvenation effect in photodynamic therapy in human dermal fibroblasts. J Invest Dermatol 133:2265–2275. doi:10.1038/jid.2013.25

    Article  CAS  Google Scholar 

  7. Juzeniene A, Juzenas P, Kaalhus O, Iani V, Moan J (2002) Temperature effect on accumulation of protoporphyrin IX after topical application of 5-aminolevulinic acid and its methylester and hexylester derivatives in normal mouse skin. Photochem Photobiol 76:452–456. doi:10.1562/0031-8655(2002)0760452TEOAOP2.0.CO2

    Article  CAS  PubMed  Google Scholar 

  8. Karrer S, Abels C, Szeimies RM, Baumler W, Dellian M, Hohenleutner U, Goetz AE, Landthaler M (1997) Topical application of a first porphycene dye for photodynamic therapy—penetration studies in human perilesional skin and basal cell carcinoma. Arch Dermatol Res 289:132–137. doi:10.1007/s004030050168

    Article  CAS  PubMed  Google Scholar 

  9. Karrer S, Bosserhoff AK, Weiderer P, Landthaler M, Szeimies RM (2004) Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts. Br J Dermatol 151:776–783. doi:10.1111/j.1365-2133.2004.06209.x

    Article  CAS  PubMed  Google Scholar 

  10. Kohl E, Torezan LA, Landthaler M, Szeimies RM (2010) Aesthetic effects of topical photodynamic therapy. J Eur Acad Dermatol Venereol 24:1261–1269. doi:10.1111/j.1468-3083.2010.03625.x

    Article  CAS  PubMed  Google Scholar 

  11. Kondo S, Kooshesh F, Sauder DN (1997) Penetration of keratinocyte-derived cytokines into basement membrane. J Cell Physiol 171:190–195. doi:10.1002/(SICI)1097-4652(199705)171:2<190:AID-JCP9>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  12. Kosaka S, Yasumoto M, Akilov OE, Hasan T, Kawana S (2010) Comparative split-face study of 5-aminolevulinic acid photodynamic therapy with intense pulsed light for photorejuvenation of Asian skin. J Dermatol 37:1005–1010. doi:10.1111/j.1346-8138.2010.00946.x

    Article  CAS  PubMed  Google Scholar 

  13. Lee Y, Baron ED (2011) Photodynamic therapy: current evidence and applications in dermatology. Semin Cutan Med Surg 30:199–209. doi:10.1016/j.sder.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  14. Nowinski D, Lysheden AS, Gardner H, Rubin K, Gerdin B, Ivarsson M (2004) Analysis of gene expression in fibroblasts in response to keratinocyte-derived factors in vitro: potential implications for the wound healing process. J Invest Dermatol 122:216–221. doi:10.1046/j.0022-202X.2003.22112.x

    Article  CAS  PubMed  Google Scholar 

  15. Palmetshofer A, Zechner D, Luger TA, Barta A (1995) Splicing variants of the human growth hormone mRNA: detection in pituitary, mononuclear cells and dermal fibroblasts. Mol Cell Endocrinol 113:225–234

    Article  CAS  PubMed  Google Scholar 

  16. Park MY, Sohn S, Lee ES, Kim YC (2010) Photorejuvenation induced by 5-aminolevulinic acid photodynamic therapy in patients with actinic keratosis: a histologic analysis. J Am Acad Dermatol 62:85–95. doi:10.1016/j.jaad.2009.06.025

    Article  CAS  PubMed  Google Scholar 

  17. Pincelli C, Sevignani C, Manfredini R, Grande A, Fantini F, Bracci-Laudiero L, Aloe L, Ferrari S, Cossarizza A, Giannetti A (1994) Expression and function of nerve growth factor and nerve growth factor receptor on cultured keratinocytes. J Invest Dermatol 103:13–18. doi:10.1111/1523-1747.ep12388914

    Article  CAS  PubMed  Google Scholar 

  18. Rabe JH, Mamelak AJ, McElgunn PJ, Morison WL, Sauder DN (2006) Photoaging: mechanisms and repair. J Am Acad Dermatol 55:1–19. doi:10.1016/j.jaad.2005.05.010

    Article  PubMed  Google Scholar 

  19. Shin MH, Rhie GE, Kim YK, Park CH, Cho KH, Kim KH, Eun HC, Chung JH (2005) H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo. J Invest Dermatol 125:221–229. doi:10.1111/j.0022-202X.2005.23823.x

    CAS  PubMed  Google Scholar 

  20. Szeimies RM, Sassy T, Landthaler M (1994) Penetration potency of topical applied delta-aminolevulinic acid for photodynamic therapy of basal cell carcinoma. Photochem Photobiol 59:73–76. doi:10.1111/j.1751-1097.1994.tb05003.x

    Article  CAS  PubMed  Google Scholar 

  21. van den Akker JT, Boot K, Vernon DI, Brown SB, Groenendijk L, van Rhoon GC, Sterenborg HJ (2004) Effect of elevating the skin temperature during topical ALA application on in vitro ALA penetration through mouse skin and in vivo PpIX production in human skin. Photochem Photobiol Sci 3:263–267. doi:10.1039/b309284d

    Article  PubMed  Google Scholar 

  22. Wan MT, Lin JY (2014) Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 7:145–163. doi:10.2147/CCID.S35334

    PubMed  PubMed Central  Google Scholar 

  23. Xi Z, Shuxian Y, Zhong L, Hui Q, Yan W, Huilin D, Leihong X, Gold MH (2011) Topical 5-aminolevulinic acid with intense pulsed light versus intense pulsed light for photodamage in Chinese patients. Dermatol Surg 37:31–40. doi:10.1111/j.1524-4725.2010.01726.x

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Chen AC, Wu Q, Jiang S, Liu X, Xiong L, Xia Y (2010) The influence of temperature on 5-aminolevulinic acid-based photodynamic reaction in keratinocytes in vitro. Photodermatol Photoimmunol Photomed 26:83–88. doi:10.1111/j.1600-0781.2010.00495.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRK), funded by Grant 2014R1A2A1A11052951 and 2013R1A1A2006944 from the Ministry of Education, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You-Sun Kim or You Chan Kim.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.K., Koo, GB., Kim, YS. et al. Epithelial–mesenchymal interaction during photodynamic therapy-induced photorejuvenation. Arch Dermatol Res 308, 493–501 (2016). https://doi.org/10.1007/s00403-016-1666-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-016-1666-3

Keywords

Navigation