Skip to main content

Advertisement

Log in

In silico database screening of potential targets and pathways of compounds contained in plants used for psoriasis vulgaris

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Reviews and meta-analyses of clinical trials identified plants used as traditional medicines (TMs) that show promise for psoriasis. These include Rehmannia glutinosa, Camptotheca acuminata, Indigo naturalis and Salvia miltiorrhiza. Compounds contained in these TMs have shown activities of relevance to psoriasis in experimental models. To further investigate the likely mechanisms of action of the multiple compounds in these TMs, we undertook a computer-based in silico investigation of the proteins known to be regulated by these compounds and their associated biological pathways. The proteins reportedly regulated by compounds in these four TMs were identified using the HIT (Herbal Ingredients' Targets) database. The resultant data were entered into the PANTHER (Protein ANnotation THrough Evolutionary Relationship) database to identify the pathways in which the proteins could be involved. The study identified 237 compounds in the TMs and these retrieved 287 proteins from HIT. These proteins identified 59 pathways in PANTHER with most proteins being located in the Apoptosis, Angiogenesis, Inflammation mediated by chemokine and cytokine, Gonadotropin releasing hormone receptor, and/or Interleukin signaling pathways. All four TMs contained compounds that had regulating effects on Apoptosis regulator BAX, Apoptosis regulator Bcl-2, Caspase-3, Tumor necrosis factor (TNF) or Prostaglandin G/H synthase 2 (COX2). The main proteins and pathways are primarily related to inflammation, proliferation and angiogenesis which are all processes involved in psoriasis. Experimental studies have reported that certain compounds from these TMs can regulate the expression of proteins involved in each of these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ETCM:

Encyclopedia of traditional Chinese medicines (7 volume book)

HIT:

Herbal Ingredients’ Targets database

KEGG:

Kyoto Encyclopedia of Genes and Genomes database

PANTHER:

Protein ANnotation THrough Evolutionary Relationship database

TM:

Traditional medicine

UniProt:

Universal Protein resource database

References

  1. Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119:651–665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Andersson D, Liu JJ, Nilsson A, Duan RD (2003) Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anticancer Res 23:3317–3322

    CAS  PubMed  Google Scholar 

  3. Apweiler R, Bateman A, Martin MJ, O’Donovan C, Magrane M, Alam-Faruque Y et al (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  Google Scholar 

  4. Avramidis G, Kruger-Krasagakis S, Krasagakis K, Fragiadaki I, Kokolakis G, Tosca A (2010) The role of endothelial cell apoptosis in the effect of etanercept in psoriasis. Brit J Dermatol 163:928–934

    Article  CAS  Google Scholar 

  5. Baldwin AS (2012) Regulation of cell death and autophagy by IKK and NF-kappaB: critical mechanisms in immune function and cancer. Immunol Rev 246:327–345

    Article  PubMed  Google Scholar 

  6. Barlow DJ, Buriani A, Ehrman T, Bosisio E, Eberini I, Hylands PJ (2012) In-silico studies in Chinese herbal medicines’ research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. J Ethnopharmacol 140:526–534

    Article  CAS  PubMed  Google Scholar 

  7. Batinac T, Zamolo G, Hadzisejdic I, Zauhar G, Brumini G, Ruzic A et al (2007) Expression of Bcl-2 family proteins in psoriasis. Croat Med J 48:319–326

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Bawolak MT, Touzin K, Moreau ME, Desormeaux A, Adam A, Marceau F (2008) Cardiovascular expression of inflammatory signaling molecules, the kinin B-1 receptor and COX2, in the rabbit: effects of LPS, anti-inflammatory and anti-hypertensive drugs. Regul Peptides 146:157–168

    Article  CAS  Google Scholar 

  9. Boots AW, Wilms LC, Swennen ELR, Kleinjans JCS, Bast A, Haenen GRMM (2008) In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition 24:703–710

    Article  CAS  PubMed  Google Scholar 

  10. Cabrijan L, Batinac T, Lenkovic M, Gruber F (2009) The distinction between lesional and non-lesional skin in psoriasis vulgaris through expression of adhesion molecules ICAM-1 and VCAM-1. Med Hypotheses 72:327–329

    Article  CAS  PubMed  Google Scholar 

  11. Canavese M, Altruda F, Ruzicka T, Schauber J (2010) Vascular endothelial growth factor (VEGF) in the pathogenesis of psoriasis—a possible target for novel therapies? J Dermatol Sci 58:171–176

    Article  CAS  PubMed  Google Scholar 

  12. Cao HH, Tse AK, Kwan HY, Yu H, Cheng CY, Su T et al (2014) Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem Pharmacol 87:424–434

    Article  CAS  PubMed  Google Scholar 

  13. Chen XW, Di YM, Zhang J, Zhou ZW, Li CG, Zhou SF (2012) Interaction of herbal compounds with biological targets: a case study with berberine. ScientificWorldJournal. doi:10.1100/2012/708292

    Google Scholar 

  14. Chen YL, Hu CS, Lin FY, Chen YH, Sheu LM, Ku HH et al (2006) Salvianolic acid B attenuates cyclooxygenase-2 expression in vitro in LPS-treated human aortic smooth muscle cells and in vivo in the apolipoprotein-E-deficient mouse aorta. J Cell Biochem 98:618–631

    Article  CAS  PubMed  Google Scholar 

  15. Cho JM, Chang SY, Kim DB, Needs PW, Jo YH, Kim MJ (2012) Effects of physiological quercetin metabolites on interleukin-1beta-induced inducible NOS expression. J Nutr Biochem 23:1394–1402

    Article  CAS  PubMed  Google Scholar 

  16. Choi EJ, Bae SM, Ahn WS (2008) Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch Pharm Res 31:1281–1285

    Article  CAS  PubMed  Google Scholar 

  17. Choi YH, Baek JH, Yoo MA, Chung HY, Kim ND, Kim KW (2000) Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells. Int J Oncol 17:565–571

    CAS  PubMed  Google Scholar 

  18. Barak Cohen, Kerner M, Rozenman D, Ziv M (2015) Combination therapy of cyclosporine and anti-tumor necrosis factor α in psoriasis: a case series of 10 patients. Dermatol Ther. doi:10.1111/dth.12196

    Google Scholar 

  19. Cortes-Cabrera A, Morris GM, Finn PW, Morreale A, Gago F (2013) Comparison of ultra-fast 2D and 3D ligand and target descriptors for side effect prediction and network analysis in polypharmacology. Br J Pharmacol 170:557–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Crawshaw AA, Griffiths CE, Young HS (2012) Investigational VEGF antagonists for psoriasis. Expert Opin Investig Drugs 21:33–43

    Article  CAS  PubMed  Google Scholar 

  21. Deng S, May BH, Zhang AL, Lu C, Xue CC (2013) Topical herbal medicine combined with pharmacotherapy for psoriasis: a systematic review and meta-analysis. Arch Dermatol Res 305:179–189

    Article  CAS  PubMed  Google Scholar 

  22. Deng S, May BH, Zhang AL, Lu C, Xue CC (2013) Plant extracts for the topical management of psoriasis: a systematic review and meta-analysis. Br J Dermatol 169:769–782

    Article  CAS  PubMed  Google Scholar 

  23. Deng SQ, May BH, Zhang AL, Lu CJ, Xue CC (2014) Topical herbal formulae in the management of psoriasis: systematic review with meta-analysis of clinical studies and investigation of the pharmacological actions of the main herbs. Phytother Res 28(4):480–497

    Article  PubMed  Google Scholar 

  24. Deng SQ, May BH, Zhang AL, Lu CJ, Xue CCL (2014) Phytotherapy in the management of psoriasis: a review of the efficacy and safety of oral interventions and the pharmacological actions of the main plants. Arch Dermatol Res 306(3):211–229

    Article  CAS  PubMed  Google Scholar 

  25. Efferth T, Koch E (2011) Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr Drug Targets 12:122–132

    Article  CAS  PubMed  Google Scholar 

  26. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 152:21–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. El-Domyati M, Barakat M, Abdel-Razek R (2006) Expression of apoptosis regulating proteins, P53 and Bcl-2, in psoriasis. J Egypt Wom Dermatol Soc 3:46–51

    Google Scholar 

  28. El Hadidi H, Huntar N, Zuyed A, El Mahgoub D, Nagui N, El Eishie N et al (2008) The effect of PUVA phototherapy on Bcl-2 expression in psoriasis vulgaris. J Egypt Wom Dermatol Soc 5:65–69

    Google Scholar 

  29. Elango T, Dayalan H, Gnanaraj P, Malligarjunan H, Subramanian S (2013) Impact of methotrexate on oxidative stress and apoptosis markers in psoriatic patients. DOI, Clin Exp Med. doi:10.1007/s10238-013-0252-7

    Google Scholar 

  30. Garcia-Perez ME, Jean J, Pouliot R (2012) Antipsoriatic drug development: challenges and new emerging therapies. Recent Pat Inflamm Allergy Drug Discov 6:3–21

    Article  CAS  PubMed  Google Scholar 

  31. George SE, Anderson RJ, Haswell M, Groundwater PW (2013) An investigation of the effects of dithranol-induced apoptosis in a human keratinocyte cell line. J Pharm Pharmacol 65:552–560

    Article  CAS  PubMed  Google Scholar 

  32. Goldminz AM, Au SC, Kim N, Gottlieb AB, Lizzul PF (2013) NF-kappaB: an essential transcription factor in psoriasis. J Dermatol Sci 69:89–94

    Article  CAS  PubMed  Google Scholar 

  33. Grozdev I, Korman N, Tsankov N (2014) Psoriasis as a systemic disease. Clin Dermatol 32:343–350

    Article  PubMed  Google Scholar 

  34. Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB (2014) Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 559C:91–99

    Article  Google Scholar 

  35. Harmand PO, Duval R, Delage C, Simon A (2005) Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells. Int J Cancer 114:1–11

    Article  CAS  PubMed  Google Scholar 

  36. Ho JH, Hong CY (2011) Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection. J Biomed Sci 18:30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Jachak SM (2006) Cyclooxygenase inhibitory natural products: current status. Curr Med Chem 13:659–678

    Article  CAS  PubMed  Google Scholar 

  38. Joshi A, Bauer R, Kuebler P, White M, Leddy C, Compton P et al (2006) An overview of the pharmacokinetics and pharmacodynamics of efalizumab: a monoclonal antibody approved for use in psoriasis. J Clin Pharmacol 46:10–20

    Article  CAS  PubMed  Google Scholar 

  39. Kahraman A, Cakar H, Koken T (2012) The protective effect of quercetin on long-term alcohol consumption-induced oxidative stress. Mol Biol Rep 39:2789–2794

    Article  CAS  PubMed  Google Scholar 

  40. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kastelan M, Prpic-Massari L, Brajac I (2009) Apoptosis in psoriasis. Acta Dermatovener Croat 17:182–186

    CAS  Google Scholar 

  42. Kim KH, Seo HS, Choi HS, Choi I, Shin YC, Ko SG (2011) Induction of apoptotic cell death by ursolic acid through mitochondrial death pathway and extrinsic death receptor pathway in MDA-MB-231 cells. Arch Pharm Res 34:1363–1372

    Article  CAS  PubMed  Google Scholar 

  43. Kim MH, Choi YY, Yang G, Cho IH, Nam D, Yang WM (2013) Indirubin, a purple 3,2-bisindole, inhibited allergic contact dermatitis via regulating T helper (Th)-mediated immune system in DNCB-induced model. J Ethnopharmacol 145:214–219

    Article  CAS  PubMed  Google Scholar 

  44. Kocak M, Bozdogan O, Erkek E, Atasoy P, Birol A (2003) Examination of Bcl-2, Bcl-X and bax protein expression in psoriasis. Int J Dermatol 42:789–793

    Article  CAS  PubMed  Google Scholar 

  45. Koczan D, Guthke R, Thiesen HJ, Ibrahim SM, Kundt G, Krentz H et al (2005) Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur J Dermatol 15:251–257

    CAS  PubMed  Google Scholar 

  46. Kokolakis G, Giannikaki E, Stathopoulos E, Avramidis G, Tosca AD, Kruger-Krasagakis S (2012) Infliximab restores the balance between pro- and anti-apoptotic proteins in regressing psoriatic lesions. Brit J Dermatol 166:491–497

    Article  CAS  Google Scholar 

  47. Kowalczyk MC, Junco JJ, Kowalczyk P, Tolstykh O, Hanausek M, Slaga TJ et al (2013) Effects of combined phytochemicals on skin tumorigenesis in SENCAR mice. Int J Oncol 43:911–918

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Kupetsky EA, Mathers AR, Ferris LK (2013) Anti-cytokine therapy in the treatment of psoriasis. Cytokine 61:704–712

    Article  CAS  PubMed  Google Scholar 

  49. Langston W, Chidlow JH Jr, Booth BA, Barlow SC, Lefer DJ, Patel RP et al (2007) Regulation of endothelial glutathione by ICAM-1 governs VEGF-A-mediated eNOS activity and angiogenesis. Free Radic Biol Med 42:720–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Leo, Sivamani RK (2014) Phytochemical modulation of the Akt/mTOR pathway and its potential use in cutaneous disease. Arch Dermatol Res 306(10):861–871

    Article  CAS  PubMed  Google Scholar 

  51. Li FL, Xu R, Zeng QC, Li X, Chen J, Wang YF et al (2012) Tanshinone IIA inhibits growth of keratinocytes through cell cycle arrest and apoptosis: underlying treatment mechanism of psoriasis. Evid-Based Compl Alt. doi:10.1155/2012/927658

    Google Scholar 

  52. Luo JL, Kamata H, Karin M (2005) IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 115:2625–2632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Luqman S, Pezzuto JM (2010) NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother Res 24:949–963

    CAS  PubMed  Google Scholar 

  54. Manu KA, Kuttan G (2008) Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. Int Immunopharmacol 8:974–981

    Article  CAS  PubMed  Google Scholar 

  55. May BH, Zhang AL, Zhou WY, Lu CJ, Deng SQ, Xue CCL (2012) Oral herbal medicines for psoriasis: a review of clinical studies. Chin J Integr Med 18(3):172–178

    Article  CAS  PubMed  Google Scholar 

  56. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  PubMed  Google Scholar 

  57. Mitra A, Fallen RS, Lima HC (2013) Cytokine-Based Therapy in Psoriasis. Clin Rev Allerg Immu 44:173–182

    Article  CAS  Google Scholar 

  58. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–S26

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Nam H, Kim MM (2013) Ursolic acid induces apoptosis of SW480 cells via p53 activation. Food Chem Toxicol 62:579–583

    Article  CAS  PubMed  Google Scholar 

  60. Nast A, Mrowietz U, Kragballe K, de Jong EM, Puig L, Reich K, Warren RB et al (2013) Barriers to the prescription of systemic therapies for moderate-to-severe psoriasis—a multinational cross-sectional study. Arch Dermatol Res 305(10):899–907

    Article  CAS  PubMed  Google Scholar 

  61. Nizamutdinova IT, Lee GW, Lee JS, Cho MK, Son KH, Jeon SJ et al (2008) Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis 29:1885–1892

    Article  CAS  PubMed  Google Scholar 

  62. Oztas P, Lortlar N, Oztas MO, Omeroglu S, Gurer MA, Alli N (2006) Caspase 9 is decreased in psoriatic epidermis. Acta Histochem 108:497–499

    Article  CAS  PubMed  Google Scholar 

  63. Pandya NM, Dhalla NS, Santani DD (2006) Angiogenesis—a new target for future therapy. Vascul Pharmacol 44:265–274

    Article  CAS  PubMed  Google Scholar 

  64. Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H et al (2007) Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 5:943–955

    Article  CAS  PubMed  Google Scholar 

  65. Potapovich AI, Lulli D, Fidanza P, Kostyuk VA, De Luca C, Pastore S et al (2011) Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NFkappaB and AhR and EGFR-ERK pathway. Toxicol Appl Pharmacol 255:138–149

    Article  CAS  PubMed  Google Scholar 

  66. Pradelli LA, Beneteau M, Ricci JE (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 67:1589–1597

    Article  CAS  PubMed  Google Scholar 

  67. Prasad S, Yadav VR, Sung B, Reuter S, Kannappan R, Deorukhkar A et al (2012) Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clin Cancer Res 18(18):4942–4953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S et al (2012) Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6 K signaling pathways. PLoS ONE 7:e47516

    Article  PubMed Central  PubMed  Google Scholar 

  69. Priyadarsini RV, Nagini S (2012) Quercetin suppresses cytochrome P450 mediated ROS generation and NFkappaB activation to inhibit the development of 7,12-dimethylbenz[a]anthracene (DMBA) induced hamster buccal pouch carcinomas. Free Radic Res 46:41–49

    Article  PubMed  Google Scholar 

  70. Racz E, Prens EP (2009) Molecular pathophysiology of psoriasis and molecular targets of antipsoriatic therapy. Expert Rev Mol Med 11:e38. doi:10.1017/S146239940900129X

    Article  PubMed  Google Scholar 

  71. Raho G, Vena GA, Bizzoca A, Cassano N, Garofalo E, Congedo M et al (2011) Influence of infliximab on keratinocyte apoptosis in psoriasis patients. Immunopharm Immunot 33:227–231

    Article  CAS  Google Scholar 

  72. Saggini A, Chimenti S, Chiricozzi A (2014) Il-6 as a druggable target in psoriasis: focus on pustular variants. J Immunol Res. doi:10.1155/2014/964069

    PubMed Central  PubMed  Google Scholar 

  73. Senggunprai L, Kukongviriyapan V, Prawan A, Kukongviriyapan U (2013) Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cells via suppression of JAK/STAT signaling pathway. Phytother Res. doi:10.1002/ptr.5061

    PubMed  Google Scholar 

  74. Song W, Sun Q, Dong Z, Spencer DM, Nunez G, Nor JE (2005) Antiangiogenic gene therapy: disruption of neovascular networks mediated by inducible caspase-9 delivered with a transcriptionally targeted adenoviral vector. Gene Ther 12:320–329

    Article  CAS  PubMed  Google Scholar 

  75. Suarez-Farinas M, Li K, Fuentes-Duculan J, Hayden K, Brodmerkel C, Krueger JG (2012) Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J Invest Dermatol 132:2552–2564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Torres-Alvarez B, Castanedo-Cazares JP, Fuentes-Ahumada C, Moncada B (2007) The effect of methotrexate on the expression of cell adhesion molecules and activation molecule CD69 in psoriasis. J Eur Acad Dermatol 21:334–339

    Article  CAS  Google Scholar 

  77. Vijayababu MR, Arunkumar A, Kanagaraj P, Arunakaran J (2006) Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells. J Carcinog 5:10. doi:10.1186/1477-3163-5-10

    Article  PubMed Central  PubMed  Google Scholar 

  78. Wrone-Smith T, Johnson T, Nelson B, Boise LH, Thompson CB, Nunez G et al (1995) discordant expression of Bcl-x and Bcl-2 by keratinocytes in-vitro and psoriatic keratinocytes in-vivo. Am J Pathol 146:1079–1088

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Yamamoto T, Nishioka K (2003) Alteration of the expression of Bcl-2, Bcl-x, bax, fas, and fas ligand in the involved skin of psoriasis vulgaris following topical anthralin therapy. Skin Pharmacol Appl 16:50–58

    Article  CAS  Google Scholar 

  80. Yang PY, Rui YC, Zhang L, Li TJ, Qiu Y, Wang JS et al (2002) Expression of vascular endothelial growth factor in U937 foam cells and the inhibitory effect of drugs. Acta Pharmaceutica Sinica 37:86–89

    CAS  PubMed  Google Scholar 

  81. Yazici AC, Karabulut AA, Ozen O, Eksioglu M, Ustun H (2007) Expression of p53 in lesions and unaffected skin of patients with plaque-type and guttate psoriasis: a quantitative comparative study. J Dermatol 34:367–374

    Article  CAS  PubMed  Google Scholar 

  82. Ye H, Ye L, Kang H, Zhang D, Tao L, Tang K et al (2011) HIT: linking herbal active ingredients to targets. Nucleic Acids Res 39:D1055–D1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Yildiz L, Baris S, Senturk N, Kandemir B (2003) Overexpression of bcl-2 in lymphocytes of psoriatic skin. J Eur Acad Dermatol 17:538–540

    Article  CAS  Google Scholar 

  84. Zhou J, Xie G, Yan X (eds) (2011) Encyclopedia of traditional Chinese medicines: molecular structures, pharmacological activities, natural sources and applications. Springer, Dordrecht

    Google Scholar 

  85. Zhou Y, Li JS, Zhang X, Wu YJ, Huang K, Zheng L (2010) Ursolic acid inhibits early lesions of diabetic nephropathy. Int J Mol Med 26:565–570

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support provided by Australian Government for the Australian Postgraduate Award (APA), RMIT University for High Degree by Research Publication Grant (HDRPG), Guangdong Provincial Academy of Chinese Medical Sciences, China, Department of Innovation, Industry, Science and Research, the International Science & Technology Cooperation Program of China; and The Financial Industry Technology Research and Development Program of Guangdong Province, China that made this research possible. We wish to thank Dr Ray Helliwell for his valuable comments.

Conflict of interest

The authors declare no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlie C. L. Xue.

Additional information

B. H. May and S. Deng contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, B.H., Deng, S., Zhang, A.L. et al. In silico database screening of potential targets and pathways of compounds contained in plants used for psoriasis vulgaris. Arch Dermatol Res 307, 645–657 (2015). https://doi.org/10.1007/s00403-015-1577-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-015-1577-8

Keywords

Navigation