Skip to main content

Advertisement

Log in

Biafine topical emulsion accelerates excisional and burn wound healing in mice

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Macrophages play a fundamental role in wound healing; therefore, employing a strategy that enhances macrophage recruitment would be ideal. It was previously suggested that the mechanism by which Biafine® topical emulsion improves wound healing is via enhanced macrophage infiltration into the wound bed. The purpose of this study was to confirm this observation through gross and histologic assessments of wound healing using murine full-thickness excisional and burn wound models, and compare to common standards, Vaseline and silver sulfadiazine (SSD). Full-thickness excisional and burn wounds were created on two groups of 60 mice. In the excisional arm, mice were divided into untreated control, Biafine, and Vaseline groups. In the burn arm, mice were divided into untreated control, Biafine, and SSD groups. Daily treatments were administered and healing was measured over time. Wound tissue was excised and stained to appropriately visualize morphology, collagen, macrophages, and neutrophils. Collagen deposition was measured and cell counts were performed. Biafine enhanced wound healing in murine full-thickness excisional and burn wounds compared to control, and surpassed Vaseline and SSD in respective wound types. Biafine treatment accelerated wound closure clinically, with greater epidermal/dermal maturity, granulation tissue formation, and collagen quality and arrangement compared to other groups histologically. Biafine application was associated with greater macrophage and lower neutrophil infiltration at earlier stages of healing when compared to other study groups. In conclusion, Biafine can be considered an alternative topical therapy for full-thickness excisional and burn wounds, owing to its advantageous biologically based wound healing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aziz Z, Abu SF, Chong NJ (2012) A systematic review of silver-containing dressings and topical silver agents (used with dressings) for burn wounds. Burns 38(3):307–318. doi:10.1016/j.burns.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  2. Barajas-Nava LA, Lopez-Alcalde J, Roque i Figuls M, Sola I, Bonfill Cosp X (2013) Antibiotic prophylaxis for preventing burn wound infection. Cochrane Database Syst Rev 6:Cd008738. doi:10.1002/14651858.CD008738.pub2

    PubMed  Google Scholar 

  3. Broughton G 2nd, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117(7 Suppl):12S–34S. doi:10.1097/01.prs.0000225430.42531.c2

    Article  CAS  PubMed  Google Scholar 

  4. Carpenter AW, Schoenfisch MH (2012) Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev 41(10):3742–3752. doi:10.1039/c2cs15273h

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cho JW, Kang MC, Lee KS (2010) TGF-beta1-treated ADSCs-CM promotes expression of type I collagen and MMP-1, migration of human skin fibroblasts, and wound healing in vitro and in vivo. Int J Mol Med 26(6):901–906. doi:10.3892/ijmm_00000540

    CAS  PubMed  Google Scholar 

  6. Chouake J, Schairer D, Kutner A, Sanchez DA, Makdisi J, Blecher-Paz K, Nacharaju P, Tuckman-Vernon C, Gialanella P, Friedman JM, Nosanchuk JD, Friedman AJ (2012) Nitrosoglutathione generating nitric oxide nanoparticles as an improved strategy for combating Pseudomonas aeruginosa-infected wounds. J Drugs Dermatol 11(12):1471–1477

    CAS  PubMed  Google Scholar 

  7. Coulomb B, Friteau L, Dubertret L (1997) Biafine applied on human epidermal wounds is chemotactic for macrophages and increases the IL-1/IL-6 ratio. Skin Pharmacol 10(5–6):281–287

    Article  CAS  PubMed  Google Scholar 

  8. Dal Secco D, Moreira AP, Freitas A, Silva JS, Rossi MA, Ferreira SH, Cunha FQ (2006) Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide 15(1):77–86. doi:10.1016/j.niox.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Han G, Nguyen LN, Macherla C, Chi Y, Friedman JM, Nosanchuk JD, Martinez LR (2012) Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol 180(4):1465–1473. doi:10.1016/j.ajpath.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  10. Hossain M, Qadri SM, Liu L (2012) Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J Inflamm (Lond) 9(1):28. doi:10.1186/1476-9255-9-28

    Article  CAS  Google Scholar 

  11. Kircik LH (2009) Study of trolamine-containing topical emulsion for wound healing after shave biopsy. Cutis 83(6):326–332

    PubMed  Google Scholar 

  12. Kuo TT, Hsueh S, Su IJ (1985) Histiocytoid hemangioma of the heart with peripheral eosinophilia. Cancer 55(12):2854–2861

    Article  CAS  PubMed  Google Scholar 

  13. Lawrence WT, Diegelmann RF (1994) Growth factors in wound healing. Clin Dermatol 12(1):157–169. doi:10.1016/0738-081X(94)90266-6

    Article  CAS  PubMed  Google Scholar 

  14. Lefer DJ, Jones SP, Girod WG, Baines A, Grisham MB, Cockrell AS, Huang PL, Scalia R (1999) Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol 276(6 Pt 2):H1943–H1950

    CAS  PubMed  Google Scholar 

  15. Macherla C, Sanchez DA, Ahmadi MS, Vellozzi EM, Friedman AJ, Nosanchuk JD, Martinez LR (2012) Nitric oxide releasing nanoparticles for treatment of Candida albicans burn infections. Front Microbiol 3:1–9. doi:10.3389/fmicb.2012.00193

    Article  Google Scholar 

  16. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25(1):19–25. doi:10.1016/j.clindermatol.2006.12.005

    Article  PubMed  Google Scholar 

  17. Sanchez DA, Schairer D, Tuckman-Vernon C, Chouake J, Kutner A, Makdisi J, Friedman JM, Nosanchuk JD, Friedman AJ (2014) Amphotericin B releasing nanoparticle topical treatment of Candida spp. in the setting of a burn wound. Nanomedicine 10(1):269–277. doi:10.1016/j.nano.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Schilling JA (1976) Wound healing. Surg Clin North Am 56(4):859–874

    CAS  PubMed  Google Scholar 

  19. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771. doi:10.1111/j.1524-475X.2009.00543.x

    Article  PubMed Central  PubMed  Google Scholar 

  20. Simpson DM, Ross R (1972) The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Invest 51(8):2009–2023. doi:10.1172/jci107007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Su WP, Davis MD, Weenig RH, Powell FC, Perry HO (2004) Pyoderma gangrenosum: clinicopathologic correlation and proposed diagnostic criteria. Int J Dermatol 43(11):790–800. doi:10.1111/j.1365-4632.2004.02128.x

    Article  PubMed  Google Scholar 

  22. Szumacher E, Wighton A, Franssen E, Chow E, Tsao M, Ackerman I, Andersson L, Kim J, Wojcicka A, Ung Y, Sixel K, Hayter C (2001) Phase II study assessing the effectiveness of Biafine cream as a prophylactic agent for radiation-induced acute skin toxicity to the breast in women undergoing radiotherapy with concomitant CMF chemotherapy. Int J Radiat Oncol Biol Phys 51(1):81–86. doi:10.1016/S0360-3016(01)01576-0

    Article  CAS  PubMed  Google Scholar 

  23. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77(3):509–528. doi:10.1016/S0039-6109(05)70566-1

    Article  CAS  PubMed  Google Scholar 

  24. Witte MB, Barbul A (2002) Role of nitric oxide in wound repair. Am J Surg 183(4):406–412. doi:10.1016/S0002-9610(02)00815-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Valeant Pharmaceuticals North America LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Friedman.

Additional information

A. E. Krausz and B. L. Adler contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krausz, A.E., Adler, B.L., Landriscina, A. et al. Biafine topical emulsion accelerates excisional and burn wound healing in mice. Arch Dermatol Res 307, 583–594 (2015). https://doi.org/10.1007/s00403-015-1559-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-015-1559-x

Keywords

Navigation