Skip to main content
Log in

Risk assessment for anterior cruciate ligament injury

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Anterior cruciate ligament tears are one of the most frequent soft tissue injuries of the knee. A torn anterior cruciate ligament leaves the knee joint unstable and at risk for further damage to other soft tissues manifested as pain, dislocation, and osteoarthritis. A better understanding of the anatomical details of knee joints suffering anterior cruciate ligament tears is needed to understand and develop prediction models for anterior cruciate ligament injury and/or tear.

Materials and methods

Magnetic resonance images of 32 patients with anterior cruciate ligament tears and 40 patients with non-tears were evaluated from a physician group practice. Digital measurements of femoral condyle length, femoral notch width, anterior cruciate ligament width in the frontal and sagittal plane, and the anterior cruciate ligament length in the sagittal plane were taken in both groups to identify trends. Monte Carlo simulations were performed (n = 2000) to evaluate the relationship between notch width index and sagittal width and to establish functional relationships among the anatomical parameters for potential injury risk. Sensitivity analysis performed shows the risk of anterior cruciate ligament injury a function of force and notch width index.

Results

Females have a significantly shorter anterior cruciate ligament when compared to that of males. The notch width index was also significantly different between torn and non-torn individuals. The NWI was not significantly different between genders (p value = 0.40).

Conclusions

Anterior cruciate ligament injury has been shown to be caused by the forces which act on the ligament. These forces can result from hyperextension of the tibia or the internal rotation of tibia. The anatomical parameters of the knee joint (i.e., notch width index, anterior cruciate ligament width and length) have no role in the cause of an injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daniel DM, Stone ML, Dobson BE et al (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  CAS  PubMed  Google Scholar 

  2. Ferretti A, Conteduca F, De Carli A et al (1991) Osteoarthritis of the knee after ACL reconstruction. Int Orthop 15:367–371

    Article  CAS  PubMed  Google Scholar 

  3. Fithian DC, Paxton EW, Stone ML et al (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346

    Article  PubMed  Google Scholar 

  4. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152

    Article  CAS  PubMed  Google Scholar 

  5. Myklebust G, Bahr R (2005) Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med 39:127–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63:269–273

    Article  Google Scholar 

  7. Centers for Disease Control and Prevention, National Center for Health Statistics, National Hospital Discharge Survey. 1996

  8. Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB (1987) Analysis of the intercondylar notch by computed tomography. Am J Sports Med 15:547–552

    Article  CAS  PubMed  Google Scholar 

  9. LaPrade RF, Burnett QM (1994) 2nd, Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22:198–202 (discussion 203)

    Article  CAS  PubMed  Google Scholar 

  10. Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21:535–539

    Article  CAS  PubMed  Google Scholar 

  11. Souryal TO, Moore HA, Evans JP (1988) Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 16:449–454

    Article  CAS  PubMed  Google Scholar 

  12. Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209–214

    Article  CAS  PubMed  Google Scholar 

  13. Anderson AF, Dome DC, Gautam S et al., Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am.J.Sports Med. 2001; 29 58-66

  14. Charlton WP, St John TA, Ciccotti MG et al (2002) Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med. 30:329–333

    PubMed  Google Scholar 

  15. Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25:69–72

    Article  CAS  PubMed  Google Scholar 

  16. Hewett TE, Paterno MV, Myer GD (2002) Strategies for enhancing proprioception and neuromuscular control of the knee. Clin Orthop Relat Res 402:76–94

    Article  PubMed  Google Scholar 

  17. Shelbourne KD, Facibene WA, Hunt JJ (1997) Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 5:229–233

    Article  CAS  PubMed  Google Scholar 

  18. Cohen SB, VanBeek C, Starman JS et al. (2009) MRI measurement of the 2 bundles of the normal anterior cruciate ligament. Orthopedics 32

  19. Chandrashekar N, Slauterbeck J, Hashemi J (2009) Re: Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med 37:423

    Article  PubMed  Google Scholar 

  20. Dienst M, Schneider G, Altmeyer K et al (2007) Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 127:253–260

    Article  PubMed  Google Scholar 

  21. Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26:937–944

    Article  PubMed  Google Scholar 

  22. Fitzgerald SW, Remer EM, Friedman H, Rogers LF, Hendrix RW, Schafer MF (1993) MR evaluation of the anterior cruciate ligament: value of supplementing sagittal images with coronal and axial images. AJR Am J Roentgenol 160(6):1233–1237

    Article  CAS  PubMed  Google Scholar 

  23. Lee SY, Matsui N, Yoshida K (2005) Magnetic resonance delineation of the anterior cruciate ligament of the knee: flexed knee position within a surface coil. Clin Imaging 29(2):117–122

    PubMed  Google Scholar 

  24. Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34(5):703–707

    Article  PubMed Central  PubMed  Google Scholar 

  25. Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7(4):209–214

    Article  CAS  PubMed  Google Scholar 

  26. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  27. Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16:633–639

    Article  CAS  PubMed  Google Scholar 

  28. Stein V, Li L, Guermazi A, Zhang Y, Kwoh CK, Eaton CB, Hunter DJ (2010) The relation of femoral notch stenosis to ACL tears in persons with knee osteoarthritis. Osteoarthritis Cartilage 18(2):192–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharadwaj Cheruvu.

Ethics declarations

Conflict of interest

No potential conflicts of interest have been identified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estes, K., Cheruvu, B., Lawless, M. et al. Risk assessment for anterior cruciate ligament injury. Arch Orthop Trauma Surg 135, 1437–1443 (2015). https://doi.org/10.1007/s00402-015-2292-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-015-2292-9

Keywords

Navigation