Skip to main content
Log in

Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This paper is concerned with several issues related to the rheological behavior of polycarbonate/multiwalled carbon nanotube nanocomposites. The composites were prepared by diluting a masterbatch of 15 wt.% nanotubes using melt-mixing method, and the dispersion was analyzed by SEM, TEM, and AFM techniques. To understand the percolated structure, the nanocomposites were characterized via a set of rheological, electrical, and thermal conductivity measurements. The rheological measurements revealed that the structure and properties were temperature dependent; the percolation threshold was significantly lower at higher temperature suggesting stronger nanotube interactions. The nanotube networks were also sensitive to the steady shear deformation particularly at high temperature. Following preshearing, the elastic modulus decreased markedly suggesting that the nanotubes became more rigid. These results were analyzed using simple models for suspensions of rod-like particles. Finally, the rheological, electrical, and thermal conductivity percolation thresholds were compared. As expected, the rheological threshold was smaller than the thermal and electrical threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdel-Goad M, Potschke P (2005) Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites. J Non-Newton Fluid Mech 128(1):2–6

    Article  MATH  CAS  Google Scholar 

  • Abdel-Goad M, Potschke P, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870

    Article  Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Bossard F, Moan M, Aubry T (2007) Linear and nonlinear viscoelastic behavior of very concentrated plate-like kaolin suspensions. J Rheol 51(6):1253–1270

    Article  CAS  ADS  Google Scholar 

  • Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645

    Article  CAS  Google Scholar 

  • Carreau PJ, De Kee DCR, Chhabra RP (1997) Rheology of polymeric systems principles and applications. Hanser, New York

    Google Scholar 

  • Chopra D, Kontopoulou M, Viassopoulos D, Hatzikiriakos SG (2002) Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheol Acta 41(1):10–24

    Article  CAS  Google Scholar 

  • Chougnet A, Audibert A, Moan M (2007) Linear and non-linear rheological behaviour of cement and silica suspensions. Effect of polymer addition. Rheol Acta 46(6):793–802

    CAS  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351

    CAS  MathSciNet  Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing: theory and applications. Van Nostrand Reinhold, New York

    Google Scholar 

  • Ding W, Eitan A, Fisher FT, Chen X, Dikin DA, Andrews R, Brinson LC, Shadler LS, Ruoff RS (2003) Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett 3(11):1593–1597

    Article  CAS  ADS  Google Scholar 

  • Dionne PJ, Picu CR, Ozisik R (2006) Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: a monte carlo investigation. Macromolecules 39(8):3089–3092

    Article  CAS  ADS  Google Scholar 

  • Du F, Scogna RC, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055

    Article  CAS  ADS  Google Scholar 

  • Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol 51(4):585–604

    Article  CAS  ADS  Google Scholar 

  • Feldman D (1987) In: Ottenbrite RM, Utracki LA, Inoue S (eds) Current topics in polymer science, vol II. C Hanser Publishers, Munich, Vienna, New York, 1987, 358 pp.

  • Friedrich C, Braun H (1992) Generalized Cole-Cole behavior and its rheological relevance. Rheol Acta 31(4):309–322

    Article  CAS  Google Scholar 

  • Harrell ER, Nakajima N (1984) Modified Cole-Cole plot based on viscoelastic properties for characterizing molecular architecture of elastomers. J Appl Polym Sci 29(3):995–1010

    Article  CAS  Google Scholar 

  • Havriliak JS (1997) Dielectric and mechanical relaxation in materials: analysis, interpretation and application to polymers. Hanser, Munich

    Google Scholar 

  • Hone J (2004) Carbon nanotubes: thermal properties. Dekker encyclopedia of nanoscience and nanotechnology. Dekker, New York, pp 603–610

    Google Scholar 

  • Hong JS, Kim C (2007) Extension-induced dispersion of multi-walled carbon nanotube in non-Newtonian fluid. J Rheol 51(5):833–850

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47(1):480–488

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  ADS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–615

    Article  CAS  ADS  Google Scholar 

  • Ivanov I, Muke S, Kao N, Bhattacharya SN (2001) Morphological and rheological study of polypropylene blends with a commercial modifier based on hydrogenated oligo (cyclopentadiene). Polymer 42(24):9809–9817

    Article  CAS  Google Scholar 

  • Kharchenko SB, Migler KB, Douglas JF, Obrzut J, Grulke EA (2004) Rheology, processing and electrical properties of multiwall carbon nanotube/polypropylene nanocomposites. ANTEC 2004:1877–1881

    Google Scholar 

  • Larson RG (1998) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Ma WKA, Chinesta F, Ammar A (2008) Rheological modeling of carbon nanotube aggregate suspensions. J Rheol 52(6):1311–1330

    Article  CAS  ADS  Google Scholar 

  • Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Waeth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748

    Article  CAS  Google Scholar 

  • Mendelson RA (1968) Prediction of melt viscosity flow curves at various temperatures for some olefin polymers and copolymers. Polym Eng Sci 8(3):235–240

    Article  CAS  Google Scholar 

  • Meyyappan M (2005) Carbon nanotubes: science and applications. CRC, Boca Raton

    Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  CAS  ADS  Google Scholar 

  • Pham GT, Park Y-B, Wang S, Liang Z, Wang B, Zhang C, Funchess P, Kramer L (2008) Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanotechnology 19(32):325705. doi:10.1088/0957-4484/19/32/325705

    Article  Google Scholar 

  • Potschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255

    Article  CAS  Google Scholar 

  • Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004a) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870

    Article  Google Scholar 

  • Potschke P, Bhattacharyya AR, Janke A (2004b) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969

    Article  CAS  Google Scholar 

  • Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol 50(5):599–610

    Article  CAS  ADS  Google Scholar 

  • Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69(3):255–260

    Article  CAS  ADS  Google Scholar 

  • Shaqfeh ESG, Fredrickson GH (1990) The hydrodynamic stress in a suspension of rods. Phys Fluids A 2:7–24

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Shenoy AV (1999) Rheology of filled polymer systems. Springer, Verlag

    Google Scholar 

  • Singh S, Pei Y, Miller R, Sundararajan PR (2003) Long-range, entangled carbon nanotube networks in polycarbonate. Adv Functional Mater 13(11):868–872

    Article  CAS  Google Scholar 

  • Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN (2006) Rheological and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 47(12):4434–4439

    Article  CAS  Google Scholar 

  • Thostenson ET, Li C, Chou T-W (2005) Nanocomposites in context. Compos Sci Technol 65(3–4):491–516

    Article  CAS  Google Scholar 

  • Utracki LA (1986) Flow and flow orientation of composites containing anisometric particles. Polym Compos 7(5):9

    Google Scholar 

  • Van Krevelen DW (1990) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  • Wu D, Liang W, Ming Z (2007a) Rheology of multi-walled carbon nanotube/poly(butylene terephthalate) composites. J Polym Sci B 45(16):2239–2251

    Article  CAS  Google Scholar 

  • Wu D, Liang W, Yurong S, Ming Z (2007b) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε -caprolactone) composites. J Polym Sci B 45(23):3137–3147

    Article  CAS  Google Scholar 

  • Xiao KQ, Zhang LC, Zarudi L (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67(2):177–182

    Article  CAS  Google Scholar 

  • Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R: Rep 49(4):89–112

    Article  Google Scholar 

  • Xinfeng S, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG (2005) Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 16(7):531–538

    Article  Google Scholar 

  • Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44(4):778–785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from NSERC (Natural Science and Engineering Research Council of Canada) is gratefully acknowledged. We are also thankful to Ms. Weawkamol Leelapornpisit for her great help in the morphological studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. Carreau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasi, S., Carreau, P.J., Derdouri, A. et al. Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48, 943–959 (2009). https://doi.org/10.1007/s00397-009-0375-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0375-7

Keywords

Navigation