Skip to main content
Log in

Molecular and condition parameters dependent diffusion coefficient of water in poly(vinyl alcohol): a molecular dynamics simulation study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Diffusion behavior of water molecules in poly(vinyl alcohol) (PVA) was investigated by molecular dynamics (MD) simulation, and the diffusion coefficient of water molecules in PVA was calculated based on the Einstein’s relation. The effects of polymerization degree, temperature, density, and pressure on the diffusion coefficient were conducted to gain insights into their diffusion mechanisms under different processing conditions. The results showed that the simulation data of diffusion coefficient was consistent with experimental values. With the increase of polymerization degree of PVA, the diffusion coefficient began with a sharp decrease and then became stable, while the diffusion coefficient increased with increasing temperature. It was also found that PVA matrix with a smaller cell density had a larger free volume, and then, the diffusion coefficient was larger. The H2O sorption isotherm could be described by the Langmuir sorption isotherm, and the diffusion coefficient decreased with the increase of pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Singh R (2014) Process capability analysis of fused deposition modelling for plastic components. Rapid Prototyping J 20(1):69–76

    Article  Google Scholar 

  2. Roberson D, Shemelya CM, MacDonald E, Wicker R (2015) Expanding the applicability of FDM-type technologies through materials development. Rapid Prototyping J 21(2):137–143

    Article  Google Scholar 

  3. Ahn S-H, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping J 8(4):248–257

    Article  Google Scholar 

  4. Hansen CM (2004) Aspects of solubility, surfaces and diffusion in polymers. Prog Org Coat 51(1):55–66

    Article  CAS  Google Scholar 

  5. Fried JR (2006) Gas diffusion and solubility in poly(organophosphazenes): results of molecular simulation studies. J Inorg Organomet Polym Mater 16(4):407–418

    Article  CAS  Google Scholar 

  6. Fried JR, Ren P (2000) The atomistic simulation of the gas permeability of poly(organophosphazenes). Part 1. Poly(dibutoxyphosphazenes). Comput Theor Polym Sci 10(5):447–463

    Article  CAS  Google Scholar 

  7. Mozaffari F, Eslami H, Moghadasi J (2010) Molecular dynamics simulation of diffusion and permeation of gases in polystyrene. Polymer 51(1):300–307

    Article  CAS  Google Scholar 

  8. Boshoff JHD, Lobo RF, Wagner NJ (2001) Influence of polymer motion, topology and simulation size on penetrant diffusion in amorphous, glassy polymers: diffusion of helium in polypropylene. Macromolecules 34(17):6107–6116

    Article  CAS  Google Scholar 

  9. Tao CG, Feng HJ, Zhou J, Lu LH, Lu XH (2009) Molecular simulation of oxygen adsorption and diffusion in polypropylene. Acta Phys-Chim Sin 25(7):1373–1378

    CAS  Google Scholar 

  10. Cuthbert TR, Wagner NJ, Paulaitis ME, Murgia G, D’Aguanno B (1999) Molecular dynamics simulation of penetrant diffusion in amorphous polypropylene: diffusion mechanisms and simulation size effects. Macromolecules 32(15):5017–5028

    Article  CAS  Google Scholar 

  11. Faure F, Rousseau B, Lachet V, Ungerer P (2007) Molecular simulation of the solubility and diffusion of carbon dioxide and hydrogen sulfide in polyethylene melts. Fluid Phase Equilib 261(1–2):168–175

    Article  CAS  Google Scholar 

  12. Kucukpinar E, Doruker P (2003) Molecular simulations of small gas diffusion and solubility in copolymers of styrene. Polymer 44(12):3607–3620

    Article  CAS  Google Scholar 

  13. van der Vegt NFA (2000) Temperature dependence of gas transport in polymer melts: molecular dynamics simulations of CO2 in polyethylene. Macromolecules 33(8):3153–3160

    Article  Google Scholar 

  14. Liu J, Cao DP, Zhang LQ (2008) Molecular dynamics study on nanoparticle diffusion in polymer melts: a test of the Stokes-Einstein law. J Phys Chem C 112(17):6653–6661

    Article  CAS  Google Scholar 

  15. Tsolou G, Mavrantzas VG, Theodorou DN (2005) Detailed atomistic molecular dynamics simulation of cis-1,4-poly(butadiene). Macromolecules 38(4):1478–1492

    Article  CAS  Google Scholar 

  16. Pavel D, Shanks R (2003) Molecular dynamics simulation of diffusion of O-2 and CO2 in amorphous poly(ethylene terephthalate) and related aromatic polyesters. Polymer 44(21):6713–6724

    Article  CAS  Google Scholar 

  17. Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31(16):5529–5535

    Article  CAS  Google Scholar 

  18. Striolo A, McCabe C, Cummings PT (2005) Thermodynamic and transport properties of polyhedral oligomeric sislesquioxanes in poly(dimethylsiloxane). J Phys Chem B 109(30):14300–14307

    Article  CAS  Google Scholar 

  19. Sudibjo A, Spearot DE (2011) Molecular dynamics simulation of diffusion of small atmospheric penetratesin polydimethylsiloxane. Mol Simul 37(2):115–122

    Article  CAS  Google Scholar 

  20. Spearot DE, Sudibjo A, Ullal V, Huang A (2012) Molecular dynamics simulations of diffusion of O-2 and N-2 penetrants in polydimethylsiloxane-based nanocomposites. Journal Of Engineering Materials And Technology-Transactions Of the Asme 134(2):8

    Article  Google Scholar 

  21. Muller-Plathe F (1998) Diffusion of water in swollen poly(vinyl alcohol) membranes studied by molecular dynamics simulation. J Membr Sci 141(2):147–154

    Article  CAS  Google Scholar 

  22. Muller-Plathe F (1998) Molecular simulation: understanding polymer gels at the molecular level. Ber Bunsenges Phys Chem 102(11):1679–1682

    Article  Google Scholar 

  23. Chiessi E, Cavalieri F, Paradossi G (2005) Supercooled water in PVA matrixes. II A molecular dynamics simulation study and comparison with QENS results J Phys Chem B 109(16):8091–8096

    CAS  Google Scholar 

  24. Tamai Y, Tanaka H (1999) Effects of polymer chains on structure and dynamics of supercooled water in poly(vinyl alcohol). Phys Rev E 59(5):5647–5654

    Article  CAS  Google Scholar 

  25. Wu CF (2010) Cooperative behavior of poly(vinyl alcohol) and water as revealed by molecular dynamics simulations. Polymer 51(19):4452–4460

    Article  CAS  Google Scholar 

  26. Karlsson GE, Johansson TS, Gedde UW, Hedenqvist MS (2002) Physical properties of dense amorphous poly(vinyl alcohol) as revealed by molecular dynamics simulation. Journal Of Macromolecular Science-Physics B 41(2):185–206

    Article  Google Scholar 

  27. Rigby D, Sun H, Eichinger B (1997) Computer simulations of poly (ethylene oxide): force field, pvt diagram and cyclization behaviour. Polym Int 44(3):311–330

    Article  CAS  Google Scholar 

  28. Theodorou DN, Suter UW (1985) Detailed molecular structure of a vinyl polymer glass. Macromolecules 18(7):1467–1478

    Article  CAS  Google Scholar 

  29. Zeng CY, Li JD, Wang D, Chen TQ, Zhao CW, Chen CX (2006) Infinite dilute activity and diffusion coefficients in polymers by inverse gas chromatography. J Chem Eng Data 51(1):93–98

    Article  CAS  Google Scholar 

  30. Shafee EE, Naguib HF (2003) Water sorption in cross-linked poly(vinyl alcohol) networks. Polymer 44(5):1647–1653

    Article  CAS  Google Scholar 

  31. Zhang QG, Liu QL, Jiang ZY, Chen Y (2007) Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes. J Membrane Sci 287(2):237–245

    Article  CAS  Google Scholar 

  32. Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107(5):1118–1124

    Article  CAS  Google Scholar 

  33. Kärger J, Binder T, Chmelik C, Hibbe F, Krautscheid H, Krishna R, Weitkamp J (2014) Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nat Mater 13(4):333–343

    Article  Google Scholar 

  34. Krishna R (2009) Describing the diffusion of guest molecules inside porous structures. J Phys Chem C 113(46):19756–19781

    Article  CAS  Google Scholar 

  35. Krishna R, van Baten JM (2013) Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials. Phys Chem Chem Phys 15(21):7994–8016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (No. 51403118 and No. 51475271).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangchun Wang or Haibin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, F., Wang, G. & Zhao, H. Molecular and condition parameters dependent diffusion coefficient of water in poly(vinyl alcohol): a molecular dynamics simulation study. Colloid Polym Sci 295, 859–868 (2017). https://doi.org/10.1007/s00396-017-4077-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4077-x

Keywords

Navigation