Skip to main content
Log in

Variable and low-toxic polyampholytes: complexation with biological membranes

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, we describe three series of polyampholytes synthesized via quaternization of poly(4-vinylpyridin) by ω-bromocarboxylic acids and alkyl bromides: (1) with cationic and anionic groups in each unit (polybetaines), (2) with betaine and cationic groups, and (3) with betaine and pendant alkyl groups. The polymers were complexed with anionic mixed lipid membranes, liposomes, and Langmuir monolayers. By varying a length of –(CH2)n– spacer in the betaine group, different behaviors of polybetaines in a suspension of anionic liposomes can be realized: from no interaction to complexation followed by significant structural reorganization in the liposomal membrane. Cytotoxicities of polyampholytes are one to two orders of magnitude less than the cytotoxicity of a pure polycationic polymer with the same degree of polymerization. These results are of importance in designing polyelectrolytes with a higher affinity to the biolodical (cell) membrane and minimum cytotoxicity and demonstrate the potential of polyampholytes in developing biocompatible polymeric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Qin T, Yin Y, Huang L, Yu Q, Yang Q (2015) H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. Clin Vaccine Immunol 22(4):421–429. doi:10.1128/CVI.00778-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen X, Wang L, Liu Q, Jia J, Liu Y, Zhang W, Su Z (2014) Polycation-decorated PLA microspheres induce robust immune responses via commonly used parenteral administration routes. Int Immunopharmacol 23(2):592–602. doi:10.1016/j.intimp.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Sheppard NC, Brinckmann SA, Gartlan KH, Puthia M, Svanborg C, Krashias G, Wegmann F (2014) Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int Immunopharmacol 26(10):531–538. doi:10.1093/intimm/dxu055

    Article  CAS  Google Scholar 

  4. Dyakonova VA, Dambaeva SV, Pinegin BV, Khaitov RM (2004) Study of interaction between the polyoxidonium immunomodulator and the human immune system cells. Int Immunopharmacol 4(13):1615–1623. doi:10.1016/j.intimp.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  5. Zarubina IV, Shabanov PD (2015) Antioxidant effect of polyoxidonium and metaprot during bronchopulmonary inflammation in rats. Bull Exp Biol Med 160(2):234–237. doi:10.1007/s10517-015-3137-9

    Article  CAS  PubMed  Google Scholar 

  6. Hoque J, Akkapeddi P, Ghosh C, Uppu DSSM, Haldar J (2016) A biodegradable polycationic paint that kills bacteria in vitro and in vivo. ACS Appl Mater Inter 8(43):29298–29309. doi:10.1021/acsami.6b09804

    Article  CAS  Google Scholar 

  7. Yin M, Li Z, Zhou L, Dong K, Ren J, Qu X (2016) A multifunctional upconverting nanoparticle incorporated polycationic hydrogel for near-infrared triggered and synergistic treatment of drug-resistant bacteria. Nanotechnology 27(12):125601. doi:10.1088/0957-4484/27/12/125601

    Article  CAS  PubMed  Google Scholar 

  8. Kim Y-H, Kim SM, Lee SY (2015) Antimicrobial activity of protamine against oral microorganisms. Biocontrol Sci Techn 20(4):275–280. doi:10.4265/bio.20.275

    Article  CAS  Google Scholar 

  9. Atar-Froyman L, Sharon A, Weiss EI, Houri-Haddad Y, Kesler-Shvero D, Domb AJ, Beyth N (2015) Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials. Biomaterials 46:141–148. doi:10.1016/j.biomaterials.2014.12.047

    Article  CAS  PubMed  Google Scholar 

  10. Kasyanenko N, Bakulev V, Perevyazko I, Nekrasova T, Nazarova O, Slita A, Panarin E (2016) Model system for multifunctional delivery nanoplatforms based on DNA-polymer complexes containing silver nanoparticles and fluorescent dye. J Biotech 236:78–87. doi:10.1016/j.jbiotec.2016.08.010

    Article  CAS  Google Scholar 

  11. Albuquerque LJ, Annes K, Milazzotto MP, Mattei B, Riske KA, Jäger E, Pánek J, Štěpánek P, Kapusta P, Muraro PI, De Freitas AG, Schmidt V, Giacomelli C, Bonvent JJ, Giacomelli FC (2016) Efficient condensation of DNA into environmentally responsive polyplexes produced from block catiomers carrying amine or diamine groups. Langmuir 32(2):577–586. doi:10.1021/acs.langmuir.5b04080

    Article  CAS  PubMed  Google Scholar 

  12. Sardo C, Craparo EF, Porsio B, Giammona G, Cavallaro G (2016) Improvements in rational design strategies of inulin derivative polycation for siRNA delivery. Biomacromolecules 17(7):2352–2366. doi:10.1021/acs.biomac.6b00281

    Article  CAS  PubMed  Google Scholar 

  13. Hrubý M, Filippov SK, Štěpánek P (2015) Smart polymers in drug delivery systems on crossroads: which way deserves following? Eur Polym J 65:82–97. doi:10.1016/j.eurpolymj.2015.01.016

    Article  CAS  Google Scholar 

  14. Jäger A, Jäger E, Surman F, Höcherl A, Angelov B, Ulbrich K, Štěpánek P (2015) Nanoparticles of the poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer for pH-triggered release of paclitaxel. Polym Chem 6(27):4946–4954. doi:10.1039/C5PY00567A

    Article  CAS  Google Scholar 

  15. Cheow WS, Hadinoto K (2012) Green amorphous nanoplex as a new supersaturating drug delivery system. Langmuir 28(15):6265–6275. doi:10.1021/la204782x

    Article  CAS  PubMed  Google Scholar 

  16. Muzzio NE, Pasquale MA, Gregurec D, Diamanti E, Kosutic M, Azzaroni O, Moya SE (2016) Polyelectrolytes multilayers to modulate cell adhesion: a study of the influence of film composition and polyelectrolyte interdigitation on the adhesion of the A549 cell line. Macromol Biosci 16(4):482–495. doi:10.1002/mabi.201500275

    Article  CAS  PubMed  Google Scholar 

  17. Zhang B-B, Wang L, Charles V, Rooke JC, Su B-L (2016a) Robust and biocompatible hybrid matrix with controllable permeability for microalgae encapsulation. ACS Appl Mater Inter 8(14):8939–8946. doi:10.1021/acsami.6b00191

    Article  CAS  Google Scholar 

  18. Tam SK, Bilodeau S, Dusseault J, Langlois G, Hallé J-P, Yahia LH (2011) Biocompatibility and physicochemical characteristics of alginate–polycation microcapsules. Acta Biomater 7(4):1683–1692. doi:10.1016/j.actbio.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  19. Guo M, Yan Y, Liu X, Yan H, Liu K, Zhang H, Cao Y (2010) Multilayer nanoparticles with a magnetite core and a polycation inner shell as pH-responsive carriers for drug delivery. Nanoscale 2(3):434–441. doi:10.1039/B9NR00244H

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Zhang Y, Chen Z, He Y (2016b) Intracellular redox-responsive nanocarrier for plasmid delivery: in vitro characterization and in vivo studies in mice. Int J Nanomedicine 11:5245–5256. doi:10.2147/IJN.S94995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang M, Wu B, Tucker JD, Lu P, Lu Q (2015) Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice. Int J Nanomedicine 5635. doi:10.2147/IJN.S89910

  22. Tang Y, Han S, Liu H, Chen X, Huang L, Li X, Zhang J (2013) The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core–shell quantum dots. Biomaterials 34(34):8741–8755. doi:10.1016/j.biomaterials.2013.07.087

    Article  CAS  PubMed  Google Scholar 

  23. Akagi D, Oba M, Koyama H, Nishiyama N, Fukushima S, Miyata T, Kataoka K (2007) Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther 14(13):1029–1038. doi:10.1038/sj.gt.3302945

    Article  CAS  PubMed  Google Scholar 

  24. Yaroslavov AA, Zaborova OV, Sybachin AV, Kalashnikova IV, Kesselman E, Schmidt E, Talmon E, Rodriguez AR, Deming TJ (2015a) Biodegradable containers composed of anionic liposomes and cationic polypeptide vesicles. RSC Adv 5(119):98687–98691. doi:10.1039/C5RA15863J

    Article  CAS  Google Scholar 

  25. Yaroslavov AA, Sybachin AV, Zaborova OV, Pergushov DV, Zezin AB, Melik-Nubarov NS, Plamper FA, Müller AHE, Menger FM (2014) Electrostatically driven complexation of liposomes with a star-shaped polyelectrolyte to low-toxicity multi-liposomal assemblies. Macromol Biosci 14(4):491–495. doi:10.1002/mabi.201300436

    Article  CAS  PubMed  Google Scholar 

  26. Cai J, Yue Y, Wang Y, Jin Z, Jin F, Wu C (2016) Quantitative study of effects of free cationic chains on gene transfection in different intracellular stages. J Control Release 238:71–79. doi:10.1016/j.jconrel.2016.07.031

    Article  CAS  PubMed  Google Scholar 

  27. Peng Q, Zhu J, Yu Y, Hoffman L, Yang X (2015) Hyperbranched lysine−arginine copolymer for gene delivery. J Biomat Sci 26(16):1163–1177. doi:10.1080/09205063.2015.1080482

    Article  CAS  Google Scholar 

  28. Alhakamy NA, Berkland CJ (2013) Polyarginine molecular weight determines transfection efficiency of calcium condensed complexes. Mol Pharm 10(5):1940–1948. doi:10.1021/mp3007117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salmasi Z, Shier WT, Hashemi M, Mahdipour E, Parhiz H, Abnous K, Ramezani M (2015) Heterocyclic amine-modified polyethylenimine as gene carriers for transfection of mammalian cells. Eur J Pharm Biopharm 96:76–88. doi:10.1016/j.ejpb.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  30. Han HM, Gopal R, Park Y (2016) Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids 48(2):505–522. doi:10.1007/s00726-015-2104-0

    Article  CAS  PubMed  Google Scholar 

  31. Hall A, Parhamifar L, Lange MK, Meyle KD, Sanderhoff M, Andersen H, Moghimi SM (2015) Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis. Biochim Biophys Acta 1847(3):328–342. doi:10.1016/j.bbabio.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Flebus L, Lombart F, Martinez-Jothar L, Sevrin C, Delierneux C, Oury C, Grandfils C (2015) In vitro study of the specific interaction between poly(2-dimethylamino ethylmethacrylate) based polymers with platelets and red blood cells. Int J Pharm 492(1):55–64. doi:10.1016/j.ijpharm.2015.06.036

    Article  CAS  PubMed  Google Scholar 

  33. Yaroslavov AA, Efimova AA, Sybachin AV (2009a) Effect of the phase state of the lipid bilayer on the structure and characteristics of the polycation-(anionic liposome) complex. Polym Sci Ser A 51(6):638–647. doi:10.1134/S0965545X0906008X

    Article  Google Scholar 

  34. Efimova AA, Sybachin AV, Yaroslavov AA (2011) Effect of anionic-lipid-molecule geometry on the structure and properties of liposome-polycation complexes. Polym Sci Ser C 53(1):89–96. doi:10.1134/S1811238211040011

    Article  CAS  Google Scholar 

  35. Angelov B, Angelova A, Filippov SK, Drechsler M, Štěpánek P, Lesieur S (2014) Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS Nano 8:5216–5226. doi:10.1021/nn5012946

    Article  CAS  PubMed  Google Scholar 

  36. Yaroslavov AA, Sybachin AV, Kesselman E, Schmidt J, Talmon Y, Rizvi SAA, Menger FM (2011a) Liposome fusion rates depend upon the conformation of polycation catalysts. J Am Chem Soc 133(9):2881–2883. doi:10.1021/ja111406q

    Article  CAS  PubMed  Google Scholar 

  37. Schulz M, Olubummo A, Binder WH, Ringsdorf H, Schlarb B, Venzmer J, Schanze KS (2012) Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter 8(18):4849–4864. doi:10.1039/c2sm06999g

    Article  CAS  Google Scholar 

  38. Wang C, Zolotarskaya OY, Nair SS, Ehrhardt CJ, Ohman DE, Wynne KJ, Yadavalli VK (2016) Real-time observation of antimicrobial polycation effects on Escherichia coli: adapting the carpet model for membrane disruption to quaternary copolyoxetanes. Langmuir 32(12):2975–2984. doi:10.1021/acs.langmuir.5b04247

    Article  CAS  PubMed  Google Scholar 

  39. Haas H, Steitz R, Fasano A, Liuzzi GM, Polverini E, Cavatorta P, Riccio P (2007) Laminar order within Langmuir−Blodgett multilayers from phospholipid and myelin basic protein: a neutron reflectivity study. Langmuir 23(16):8491–8496. doi:10.1021/la700733y

    Article  CAS  PubMed  Google Scholar 

  40. Robison AD, Sun S, Poyton MF, Johnson GA, Pellois J-P, Jungwirth P, Cremer PS (2016) Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers. J Phys Chem B 120(35):9287–9296. doi:10.1021/acs.jpcb.6b05604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yaroslavov AA, Sitnikova TA, Rakhnyanskaya AA, Yaroslavova EG, Davydov DA, Burova TV, Menger FM (2009b) Biomembrane sensitivity to structural changes in bound polymers. J Am Chem Soc 131(5):1666–1667. doi:10.1021/ja808461s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sybachin AV, Zaborova OV, Ballauff M, Kesselman E, Schmidt J, Talmon Y, Menger FM, Yaroslavov AA (2012) Composition and properties of complexes between spherical polycationic brushes and anionic liposomes. Langmuir 28(46):16108–16114. doi:10.1021/la3024265

    Article  CAS  PubMed  Google Scholar 

  43. Yaroslavov AA, Sitnikova TA, Rakhnyanskaya AA, Ermakov YA, Burova TV, Grinberg VYA, Menger FM (2007) Contrasting behavior of zwitterionic and cationic polymers bound to anionic liposomes. Langmuir 23(14):7539–7544. doi:10.1021/LA700637D

    Article  CAS  PubMed  Google Scholar 

  44. Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M, Bolto B, Richmond P (2014) Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10(15):2479–2502. doi:10.1039/c3sm52132j

    Article  CAS  PubMed  Google Scholar 

  45. Sybachin AV, Zaborova OV, Pergushov DV, Zezin AB, Plamper FA, Müller AHE, Kesselman E, Schmidt E, Talmon Y, Menger FM, Yaroslavov AA (2016) Complexes of star-shaped cationic polyelectrolytes with anionic liposomes: towards multi-liposomal assemblies with controllable stability. Polymer 93:198–203. doi:10.1016/j.polymer.2016.04.025

    Article  CAS  Google Scholar 

  46. Yaroslavov AA, Sybachin AV, Zaborova OV, Migulin VA, Samoshin VV, Ballauff M, Menger FM (2015b) Capacious and programmable multi-liposomal carriers. Nanoscale 7(5):1635–1641. doi:10.1039/C4NR06037G

    Article  CAS  PubMed  Google Scholar 

  47. Ivashkov OV, Sybachin AV, Efimova AA, Pergushov DV, Orlov VN, Schmalz H, Yaroslavov AA (2015) The influence of the chain length of polycations on their complexation with anionic liposomes. ChemPhysChem 16(13):2849–2853. doi:10.1002/cphc.201500474

    Article  CAS  PubMed  Google Scholar 

  48. Sivov NA (2006) In: Biocide guanidine containing polymers: synthesis, structure and properties. CRC Press

  49. Thomas TP, Majoros I, Kotlyar A, Mullen D, Holl MM, Baker Jr JR (2009) Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. Biomacromolecules 10(12):3207–3214. doi:10.1021/bm900683r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwolek U, Jamróz D, Janiczek M, Nowakowska M, Wydro P, Kepczynski M (2016) Interactions of polyethylenimines with zwitterionic and anionic lipid membranes. Langmuir 32(19):5004–5018. doi:10.1021/acs.langmuir.6b00490

    Article  CAS  PubMed  Google Scholar 

  51. Yaroslavov AA, Sybachin AV, Zaborova OV, Orlov VN, Ballauff M, Talmon Y, Menger FM (2013) Lipid segregation in membranes of anionic liposomes adsorbed onto polycationic brushes. Chem Eur J 19(41):13674–13678. doi:10.1002/chem.201301944

    Article  CAS  PubMed  Google Scholar 

  52. Sybachin AV, Zaborova OV, Orlov VN, Semenyuk PI, Ballauff M, Kesselman E, Schmidt J, Talmon Y, Menger FM, Yaroslavov AA (2014) Complexes between anionic liposomes and spherical polycationic brushes. An assembly of assemblies. Langmuir 30(9):2441–2447. doi:10.1021/la4036248

    Article  CAS  PubMed  Google Scholar 

  53. Ciumac D, Campbell RA, Xu H, Clifton LA, Hughes AV, Webster JRP, Lu JR (2016) Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. Colloids Surf B Biointerfaces. doi:10.1016/j.colsurfb.2016.10.043

    Article  PubMed  Google Scholar 

  54. Pazin WM, Olivier DS, Vilanova N, Ramos AP, Voets IK, Soares AEE, Ito AS (2016) Interaction of Artepillin C with model membranes. Eur Biophys J. doi:10.1007/s00249-016-1183-5

    Article  PubMed  Google Scholar 

  55. Kurniawan J, Suga K, Kuhl TL (2016) Interaction forces and membrane charge tunability: oleic acid containing membranes in different pH conditions. Biochim Biophys Acta. doi:10.1016/j.bbamem.2016.11.001

    Article  Google Scholar 

  56. Dékány G, Csóka I, Erös I (2001) Interaction between liposomes and neutral polymers: effect of adsorption on drug release György Dékány, Ildikó Csóka & István Erös interaction between liposomes and neutral polymers: effect of adsorption on drug release. J Disper Sci Technol 22(5):461–472. doi:10.1081/DIS-100107855

    Article  Google Scholar 

  57. Leitmannova Liu A. (2008) In: Advances in planar lipid bilayers and liposomes. Elsevier

  58. Xie AF, Granick S (2002) Phospholipid membranes as substrates for polymer adsorption. Nat Mater 1:129–133. doi:10.1038/nmat738

    Article  CAS  PubMed  Google Scholar 

  59. Kučerka N, Nieh M-P, Katsaras J (2011) Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim Biophys Acta 1808(11):2761–2771. doi:10.1016/j.bbamem.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  60. Sennato S, Carlini L, Truzzolillo D, Bordi F (2016) Salt-induced reentrant stability of polyion-decorated particles with tunable surface charge density. Colloids Surf B Biointerfaces 137:109–120. doi:10.1016/j.colsurfb.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  61. Yaroslavov AA, Melik-Nubarov NS, Menger FM (2006) Polymer-induced flip-flop in biomembranes. Acc Chem Res 39(10):702–710. doi:10.1021/ar050078q

    Article  CAS  PubMed  Google Scholar 

  62. Sybachin AV, Efimova AA, Litmanovich EA, Menger FM, Yaroslavov AA (2007) Complexation of polycations to anionic liposomes: composition and structure of the interfacial complexes. Langmuir 23(20):10034–10039. doi:10.1021/la701411y

    Article  CAS  PubMed  Google Scholar 

  63. Yaroslavov AA, Efimova AA, Sybachin AV, Izumrudov VA, Samoshin VV, Potemkin II (2011b) Stability of anionic liposome-cationic polymer complexes in water-salt media. Colloid J 73(3):430–435. doi:10.1134/S1061933X11030185

    Article  CAS  Google Scholar 

  64. Sitnikova TA, Rakhnyanskaya AA, Yaroslavova EG, Melik-Nubarov NS, Yaroslavov AA (2013) Physicochemical and biological properties of polyampholytes: quaternized derivatives of poly(4-vinylpyridine). Polym Sci Ser A 55(3):163–170. doi:10.1134/S0965545X13030061

    Article  CAS  Google Scholar 

  65. Fischer, D. et al (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7):1121–31. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12527253. Accessed 27 Nov 2016.

    Article  CAS  Google Scholar 

  66. Qi P, Bu Y, Xu J, Qin B, Luan S, Song S (2016) pH-responsive release of paclitaxel from hydrazone-containing biodegradable micelles. Colloid Polym Sci. doi:10.1007/s00396-016-3968-6

    Article  Google Scholar 

  67. Yaroslavov AA, Sybachin AV, Zaborova OV, Zezin AB, Talmon Y, Ballauff M, Menger FM (2015c) Multi-liposomal containers. Adv Colloid Interf Sci 226:54–64. doi:10.1016/j.cis.2015.08.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (project 14-13-00255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yaroslavov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaroslavov, A.A., Sitnikova, T.A., Rakhnyanskaya, A.A. et al. Variable and low-toxic polyampholytes: complexation with biological membranes. Colloid Polym Sci 295, 1405–1417 (2017). https://doi.org/10.1007/s00396-017-4054-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4054-4

Keywords

Navigation