Skip to main content

Advertisement

Log in

The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Well-defined “smart” injectable hydrogel based on hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(lactic acid-co-glycolic acid) (PLA/PGA) copolymer (PLGA-PEG-PLGA) gelling at the body temperature was modified by bioactive hydroxyapatite (HAp) in the form of micro-, nano-, and core-shell particles (μ-HAp, n-HAp, and CS-x, respectively) to be applicable as calcium delivery system in bone regeneration. Viscoelastic moduli increased with HAp content as expected. Whereas systems containing μ-HAp or CS-x particles maintained two sol-gel and gel-sol phase transitions, the n-HAp containing system showed only one sol-gel phase transition due to the strong interactions between polymer chain and the n-HAp surface. In vitro, studies proved the controlled uniform release of calcium cations from both CS-x and n-HAp over the 9-day period without any initial burst release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fu S, Guo G, Gong C, Zen S, Liang H, Luo F, Zhang X, Zhao X, Wei Y, Qian Z (2009) Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 113:16518–16525. doi:10.1021/jp907974d

    Article  CAS  Google Scholar 

  2. Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51. doi:10.1016/S0169-409X(01)00242-3

    Article  CAS  Google Scholar 

  3. Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18. doi:10.1016/j.ijpharm.2004.04.013

    Article  CAS  Google Scholar 

  4. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397. doi:10.3390/polymer3031377

    Article  CAS  Google Scholar 

  5. E. Jančářová (2014). Structure and properties of collagen/HAp nanocomposites network. Doctoral thesis. Brno

  6. Sasaki S, Ishii Y (1999) Apatite cements containing antibiotics: efficacy in treating experimental osteomyelitis. Journal Orthopaedic Science 4:361–369. doi:10.1007/s007760050117

    Article  CAS  Google Scholar 

  7. Schnieders J, Gbureck U, Thull R, Kissel T (2006) Controlled release of gentamicin from calcium phosphate-poly(lactic-co-glycolic acid) composite bone cement. Biomaterials 27:4239–4249. doi:10.1016/j.biomaterials.2006.03.032

    Article  CAS  Google Scholar 

  8. Fullana SG, Ternet H, Freche M, Rodriguez F (2010) Controlled release properties and final macroporosity of pectin microspheres-calcium phosphate composite bone cements. Acta Biomater 6:2294–2300. doi:10.1016/j.actbio.2009.11.019

    Article  CAS  Google Scholar 

  9. Otsuka M, Nakagawa H, Ito A, Higuchi WI (2010) Effect of geometrical structure on drug release rate of a three-dimensionally perforated porous apatite/collagen composite cement. J Pharm Sci 99:286–292. doi:10.1002/jps.21835

    Article  CAS  Google Scholar 

  10. Tani T, Okada K, Takahashi S, Suzuki N, Shimada Y, Itoi E (2006) Doxorubicin-loaded calcium phosphate cements in the management of bone and soft tissue tumors. In Vivo 20:55–60

    CAS  Google Scholar 

  11. Schnitzler V, Fayon F, Despas C, Khairoun I, Mellier C, Rouillon T, Massiot D, Walcarius A, Janvier P, Gauthier O, Montavon G, Bouler. JM, Bujoli B (2011) Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: critical influence of the drug introduction mode on the in vitro cement properties. Acta Biomater 7:759–770. doi:10.1016/j.actbio.2010.09.017

    Article  CAS  Google Scholar 

  12. de Boer HH (1988) The history of bone grafts. Clin Orthop Relat Res 226:292–298

    Google Scholar 

  13. Vacanti CA, Kim W, Upton J, Vacanti MP, Mooney D, Schloo B, Vacanti JP (1993) Tissue-engineered growth of bone and cartilage. Transplantation Proceeding 25:1019–1021

    CAS  Google Scholar 

  14. Osman MA, Atallah A, Schweizer T, Ӧttinger HCH (2004) Particle–particle and particle-matrix interactions in calcite filled high-density polyethylene—steady shear. J Rheol 48:1167. doi:10.1122/1.1784782

    Article  CAS  Google Scholar 

  15. R.A. Hule, D.J. Pochan. Polymer nanocomposites for biomedical application. MRS Buletin 32 (2007). doi: 10.1557/mrs2007.235

  16. Ye L, Chu X, Zhang Z, Kan Y, Xie Y, Grillo I, Zhao J, Dreiss CA, Qiu D (2014) Effect of particles polydispersity on the structure and dynamics of complex formation between small particles and large polymer. RCS Advances 4:14896

    CAS  Google Scholar 

  17. Částková K, Hadraba H, Matousek A, Roupcová P, Chlup Z, Novotná L, Cihlář J (2016) Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites. Journal of the European Ceramic Society 36:2903–2912. doi:10.1016/j.jeurceramsoc.2015.12.045

    Article  Google Scholar 

  18. Michlovská L, Vojtová L, Mravcová L, Hermanová S, Kučerík J, Jančář J (2010) Functionalization conditions of PLGA-PEG-PLGA copolymer with itaconic anhydride. Macromol Symp 295:119–124. doi:10.1002/masy.200900071

    Article  Google Scholar 

  19. Nakajima N, Ikada Y (1995) Mechanisms of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem 6:123–130

    Article  CAS  Google Scholar 

  20. I. Chamradová (2015) Polymeric materials for the controlled drug release and controlled release of active substances. Doctoral Thesis. Brno

  21. Chen L, Mccrate JM, Lee JC, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708. doi:10.1088/0957-4484/22/10/105708

    Article  Google Scholar 

  22. Chamradová I, Vojtová L, Michlovská L, Poláček P, Jančář J (2011) Rheological properties of functionalised thermosensitive copolymers for injectable applications in medicine. Chem Pap 66:977–980. doi:10.2478/s11696-012-0210-y

    Google Scholar 

  23. Kumar R, Kalur GC, Ziserman L, Danino D, Raghavan SR (2007) Wormlike micelles of a C22-tailed zwitterionic betaine surfactant: from viscoelastic solutions to elastic gels. Langmuir 23:12849–12856. doi:10.1021/la7028559

    Article  CAS  Google Scholar 

  24. Hashizaki K, Taguchi H, Saito Y (2009) Effects of temperature on the rheological behavior of worm-like micelles in a mixed nonionic surfactant system. Journal of Oleo Science 58(5):255–260. doi:10.5650/jos.58.255

    Article  CAS  Google Scholar 

  25. Kalfus J, Jančář J (2007) Elastic response of nanocomposite poly(vinylacetate)-hydroxyapatite with varying particles shape. Polym Compos 28:365–371. doi:10.1002/pc.20273

    Article  CAS  Google Scholar 

  26. Raghavan SR, Douglas JF (2012) The conundrum of gel formation by molecular nanofibers, wormlike micelles and filamentous proteins: gelation without cross-links? Soft Materials 8:8539–8546. doi:10.1039/c2sm25107h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II and FP7 project no. 60436 named “BioScaffolds”. We acknowledge the CF Cryo-electron Microscopy and Tomography supported by the CIISB research infrastructure (LM2015043 funded by MEYS CR) for their support with obtaining scientific data presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chamradová.

Ethics declarations

Statement of disclosure

This study was funded by CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II (grant number LQ1601) and MEYS CR (grant number LM2015043).

Authors Ivana Chamradova, Lucy Vojtová, Josef Jančář, and Pavel Diviš have received research grants from CEITEC 2020 (grant number LQ1601). Author Miroslav Peterek has received research grant from MEYS CR (grant number LM2015043) and Klára Částková FP7 project No. 60436 named “BioScaffolds”.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamradová, I., Vojtová, L., Částková, K. et al. The effect of hydroxyapatite particle size on viscoelastic properties and calcium release from a thermosensitive triblock copolymer. Colloid Polym Sci 295, 107–115 (2017). https://doi.org/10.1007/s00396-016-3983-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3983-7

Keywords

Navigation