Skip to main content
Log in

Worm-like vesicle formation by photo-controlled/living radical polymerization-induced self-assembly of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid)

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The formation mechanisms of worm-like vesicles were determined by the photopolymerization-induced self-assembly of an amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid) diblock copolymer, PMAA-b-P(MMA-r-MAA). The photopolymerization-induced self-assembly was performed by the nitroxde-mediated photo-controlled/living radical polymerization in an aqueous methanol solution using a PMAA end-capped with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl. The polymerization retained its living nature during the self-assembly. The copolymer during the early stage of the polymerization produced cup-like vesicles that had some holes in the surface and were comprised of a thin and flexible bilayer. As the hydrophobic P(MMA-r-MAA) block chain was extended by the polymerization progress, the cup-like vesicles were transformed into spherical vesicles, accompanied by decreases in the number of holes and their size. Further extension of the hydrophobic block chain enhanced the intervesicular aggregation to provide worm-like vesicles. These morphological changes were accounted for by variation in the critical packing shape of the copolymer by expansion of the hydrophobic chain volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Frey TG, Mannella CA (2000) Trends Biochem Sci 25:319

    Article  CAS  Google Scholar 

  2. Austin JR II, Staehelin LA (2011) Plant Physiol 155:1601

    Article  CAS  Google Scholar 

  3. Kessel RG, Kardon RH (1979) Tissues and organs, a text-atlas of scanning electron microscopy. W. H. Freeman and Company, San Francisco, p 199

    Google Scholar 

  4. Lee C, Chen LB (1988) Cell 54:37

    Article  CAS  Google Scholar 

  5. Li H, Chen Q, Zhao J, Urmila K (2015) Sci Rep 5:11033

    Article  CAS  Google Scholar 

  6. McNulty CAM, Dent JC, Curry A, Uff JS, Ford GA, Gear MWL, Wilkinson SP (1989) J Clin Pathol 42:585

    Article  CAS  Google Scholar 

  7. Yoshida E (2015) Colloid Polym Sci 293:249

    Article  CAS  Google Scholar 

  8. Yoshida E (2015) Colloid Polym Sci 293:3641

    Article  CAS  Google Scholar 

  9. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, Waltham, p 559

    Google Scholar 

  10. Yoshida E (2015) Colloid Polym Sci 293:1841

    Article  CAS  Google Scholar 

  11. Yoshida E (2013) Colloid Polym Sci 291:2733

    Article  CAS  Google Scholar 

  12. Yoshida E (2014) Colloid Polym Sci 292:763

    Article  CAS  Google Scholar 

  13. Yoshida E (2014) Colloid Polym Sci 292:1463

    Article  CAS  Google Scholar 

  14. Yoshida E (2014) Colloid Polym Sci 292:2555

    Article  CAS  Google Scholar 

  15. Yoshida E (2015) Supramol Chem 27:274

    Article  CAS  Google Scholar 

  16. Yoshida E (2015) Colloid Polym Sci 293:1275

    Article  CAS  Google Scholar 

  17. Yoshida E (2015) Colloid Polym Sci 293:1835

    Article  CAS  Google Scholar 

  18. Yoshida E (2015) Colloid Polym Sci 293:2437

    Article  CAS  Google Scholar 

  19. Yoshida E (2014) OJPChem 4:47

    Article  Google Scholar 

  20. Yoshida E (2013) OJPChem 3:16

    Article  CAS  Google Scholar 

  21. Miyazawa T, Endo T, Shiihashi S, Ogawara M (1985) J Org Chem 50:1332

    Article  CAS  Google Scholar 

  22. Yoshida E (2012) International Scholarly Research Network (ISRN). Polym Sci. doi:10.5402/2012/102186, Article 102186

    Google Scholar 

  23. Kobayashi S, Uyama H, Yamamoto I, Matsumoto Y (1990) Polym J 22:759

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful for a JSPS Grant-in-Aid for Scientific Research (Grant Number 25390003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri Yoshida.

Ethics declarations

Competing interest

The author declares that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

A 1H NMR spectrum of PMAA320-b-P(MMA0.830-r-MAA0.170)309 produced by the photopolymerization-induced self-assembly. Solvent: CD3OD-d 4/CDCl3 = 3/1 (v/v). (PDF 36 kb)

Fig. S2

GPC profiles of the PMAA-b-P(MMA-r-MAA) block copolymers produced by the photopolymerization-induced self-assembly; polymerization time = 1.5 h (PMAA320-b-P(MMA0.907-r-MAA0.093)82), 3.0 h (PMAA320-b-P(MMA0.865-r- MAA0.135)186), and 4.5 h (PMAA320-b-P(MMA0.830-r-MAA0.170)309) from the right. (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, E. Worm-like vesicle formation by photo-controlled/living radical polymerization-induced self-assembly of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-methacrylic acid). Colloid Polym Sci 294, 1857–1863 (2016). https://doi.org/10.1007/s00396-016-3935-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3935-2

Keywords

Navigation