Skip to main content
Log in

Dispersion of carbon nanoparticle in water with poly(acrylic acid)-poly(amideimide) copolymers

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The dispersion of carbon nanoparticles in water was investigated using dispersants based on block copolymers of poly(acrylic acid) (PAA) and poly(amideimide) (PAI) or a homopolymer of PAA. A diblock copolymer (PAA-block-PAI), triblock copolymer (PAA-block-PAI-block-PAA), and hetero-arm star block copolymer (PAA2PAI) with similar molecular weights and PAA contents were used as dispersants. The dispersion of solutions with these polymers was investigated by ζ-potential measurements and transmission electron microscopy. The adsorption of PAI onto carbon nanoparticles was observed. The dispersion of carbon nanoparticles was measured using dynamic light scattering and UV-vis spectroscopy. The dispersibility of carbon nanoparticles increased through the series of copolymers (from most to least dispersed): PAA2PAI, PAA-block-PAI, PAA-block-PAI-block-PAA, and homo-PAA. PAA-PAI copolymers behaved as effective dispersants for carbon nanoparticles in water. The presence of a hydrophobic block was essential for dispersion. The architecture of the block copolymers also influenced the dispersion of nanoparticles. Locally concentrated regions of PAA exhibited repulsive interactions, causing dispersion of nanoparticles. PAA2PAI demonstrated the greatest potential as an anode binder in lithium-ion batteries because it functioned as a dispersant for the conductive additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38:183–197. doi:10.1016/S0008-6223(99)00141-4

    Article  CAS  Google Scholar 

  2. Weifeng L, Xuejie H, Guobao L, Zhaoxiang W, Hong H, Zhonghua L, Rongjian X, Liquan C (1997) Electrochemical and X-ray photospectroscopy studies of polytetrafluoroethylene and polyvinylidene fluoride in Li/C batteries. C. J Power Sources 68:344–347. doi:10.1016/S0378-7753(97)02637-2

    Article  Google Scholar 

  3. Jiang F, Fedkiw PS (1998) Electrochemical impedance spectra of full cells: relation to capacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, and LiNiO2 cathodes. J Power Sources 72:165–173. doi:10.1016/S0378-7753(97)02708-0

    Article  Google Scholar 

  4. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interf Sci 128–130:37–46. doi:10.1016/j.cis.2006.11.007

    Article  Google Scholar 

  5. Liu WR, Yang MH, Wu HC, Chiao SM, NL W (2005) Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem Solid-State Lett 8(2):A100–A103. doi:10.1149/1.184768

    Article  CAS  Google Scholar 

  6. Mi L, Tian Y, Zheng X, Gao J, Huang B (2012) Preparation, characterization and electrochemical performance of silicon coated natural graphite as anode for lithium ion batteries. Int J Electrochem Sci 7:6180–6190

    Google Scholar 

  7. Guo J, Wang C (2010) A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem Commun 46:1428–1430. doi:10.1039/B918727H

    Article  CAS  Google Scholar 

  8. Park HK, Kong BS, Oh ES (2011) Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem Commun 13:1051–1053. doi:10.1016/j.elecom.2011.06.034

    Article  CAS  Google Scholar 

  9. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K (2011) Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries J. Phys Chem C 115:13487–13495. doi:10.1021/jp201691g

    Article  CAS  Google Scholar 

  10. Komaba S, Tanaka T, Ozeki T, Taki T, Watanabe T, Tachikawa H (2010) J Power Sources 195:6069–6074

    Article  CAS  Google Scholar 

  11. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. Appl Mater. Interfaces 2:3004–3010. doi:10.1021/am100871y

    Article  CAS  Google Scholar 

  12. Growney DJ, Mykhaylyk OO, Derouineau T, Fielding LA, Smith AJ, Aragrag N, Lamb GD, Armes SP (2015) Star diblock copolymer concentration dictates the degree of dispersion of carbon black particles in nonpolar media: bridging flocculation versus steric stabilization. Macromolecules 48:3691–3704. doi:10.1021/acs.macromol.5b00517

    Article  CAS  Google Scholar 

  13. Choi NS, Yew KH, Choi WU, Kim SS (2008) Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J. Power Sour 177:590–594. doi:10.1016/j.jpowsour.2007.11.082

    Article  CAS  Google Scholar 

  14. Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc 124:9034–9035. doi:10.1021/ja026104m

    Article  CAS  Google Scholar 

  15. Okamoto M, Fujigaya T, Nakashima N (2008) Individual dissolution of single-walled carbon nanotubes by using polybenzimidazole, and highly effective reinforcement of their composite films. Adv Funct Mater 18:1776–1782. doi:10.1002/adfm.200701257

    Article  CAS  Google Scholar 

  16. Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699. doi:10.1021/jp8021634

    Article  CAS  Google Scholar 

  17. Murdock RC, Stolle LB, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.1093/toxsci/kfm240

    Article  CAS  Google Scholar 

  18. Yoshino T, Karikomi M, Kimura T (2012) Preparation of amphiphilic polymers and dispersion stability of carbon of carbon black in their aqueous solutions. Kobunshi Ronbunshu 69:503–510. doi:10.1295/koron.69.503

    Article  CAS  Google Scholar 

  19. Lee JU, Huh J, Kim KH, Park C, Jo WH (2007) Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol). Carbon 45:1051–1057. doi:10.1016/j.carbon.2006.12.017

    Article  CAS  Google Scholar 

  20. Ridaoui H, Jada A, Vidal L, Donnet JB (2006) Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf A: Physicochem Eng Asp 278:149–159. doi:10.1016/j.colsurfa.2005.12.013

    Article  CAS  Google Scholar 

  21. Greenwood R, Kendall K (1999) Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J Eur Ceram Soc 19:479–488. doi:10.1016/S0955-2219(98)00208-8

    Article  CAS  Google Scholar 

  22. Hanaor D, Michelazzi M, Leonelli C, Sorrell CC (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc 32:235–244. doi:10.1016/j.jeurceramsoc.2011.08.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Kakenhi (Grant-in-Aid for Scientific Research on Innovative Areas), Grant Numbers 25102512 and 15H00727. TEM analysis was supported by Center for Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiko Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubotera, A., Saito, R. Dispersion of carbon nanoparticle in water with poly(acrylic acid)-poly(amideimide) copolymers. Colloid Polym Sci 294, 941–946 (2016). https://doi.org/10.1007/s00396-016-3861-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3861-3

Keywords

Navigation