Skip to main content
Log in

Quantitative evaluation of shift of slipping plane and counterion binding to lysozyme by electrophoresis method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Measurement and analysis of electrophoretic mobility (EPM) are widely used to investigate electric charging properties of proteins. However, the proper way of analysis for EPM of protein has not yet been fully consolidated. In this study, the EPM of hen-egg-white lysozyme (LSZ) was measured as a function of pH at different concentrations of KCl solutions. The obtained experimental EPMs are compared to theoretical EPMs which were calculated from charge amount from proton titration. Theoretical EPMs were calculated by a set of models for a small rigid particle including Poisson-Boltzmann model and the effect of double-layer relaxation and by that for a soft particle neglecting the relaxation effect. The results of comparisons show that one can analyze the EPM of LSZ as a small rigid particle. Nevertheless, all analyses overestimate experimental data. We presume that these discrepancies are caused by the shift of slipping plane from the surface and/or by binding of counterion to LSZ. Therefore, we examined these two effects on the analyses of EPM. Our analyses demonstrate that introducing the 0.5–2 nm shift of slipping plane or the 40–80 % reduction of effective charge generates the quantitative agreement between theoretical EPMs and experimental data. We find the required amount of reduced charge is 4–5 elementary charges per LSZ irrespective of pH and ionic strength below pH 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Štajner L, Požar J, Kovačević D (2015) Complexation between lysozyme and sodium poly(styrenesulfonate): the effect of pH, reactant concentration and titration direction. Colloids Surfaces A Physicochem. Eng Asp 483:171–180. doi:10.1016/j.colsurfa.2015.03.034

    Article  Google Scholar 

  2. Su T, Lu J, Thomas R, Cui Z, Penfold J (1998) The adsorption of lysozyme at the silica-water interface: a neutron reflection study. J Colloid Interface Sci 203:419–429. doi:10.1006/jcis.1998.5545

    Article  CAS  Google Scholar 

  3. Sofińska K, Adamczyk Z, Kujda M, Nattich-Rak M (2014) Recombinant albumin monolayers on latex particles. Langmuir 30:250–258. doi:10.1021/la403715s

    Article  Google Scholar 

  4. Norde W, Gonzalez FG, Haynes CA (1995) Protein adsorption on polystyrene latex particles. Polym Adv Technol 6:518–525. doi:10.1002/pat.1995.220060713

    Article  CAS  Google Scholar 

  5. Bharti B, Meissner J, Findenegg GH (2011) Aggregation of silica nanoparticles directed by adsorption of lysozyme. Langmuir 27:9823–9833. doi:10.1021/la201898v

    Article  CAS  Google Scholar 

  6. Wang Z, Gong X, Ngai T (2015) Measurements of long-range interactions between protein-functionalized surfaces by Total internal reflection microscopy. Langmuir 31:3101–3107. doi:10.1021/acs.langmuir.5b00090

    Article  CAS  Google Scholar 

  7. Smoluchowski M (1903) Contribution à la théorie l’endosmose électrique et de quelques phénomènes corrélatifs. Bull. Int. l’Académie Des Sci. Cracovie, Cl. Des Sci. Mathématiques Nat 8:182–199

  8. Huckel E (1924) Die kataphorese der kugel. Phys Z 25:204–210

    Google Scholar 

  9. Henry DC (1931) The cataphoresis of suspended particles, part 1. The equation of cataphoresis. Proc R Soc L 133A:106–129

    Article  Google Scholar 

  10. O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 74:1607–1626. doi:10.1039/f29787401607

    Article  Google Scholar 

  11. Ohshima H, Healy TW, White LR (1983) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2 79:1613–1628. doi:10.1039/f29837901613

    Article  CAS  Google Scholar 

  12. Ohshima H (2001) Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci 239:587–590. doi:10.1006/jcis.2001.7608

    Article  CAS  Google Scholar 

  13. Kobayashi M, Skarba M, Galletto P, Cakara D, Borkovec M (2005) Effects of heat treatment on the aggregation and charging of Stober-type silica. J Colloid Interface Sci 292:139–147. doi:10.1016/j.jcis.2005.05.093

    Article  CAS  Google Scholar 

  14. Čop A, Kovačević D, Dragić T, Kallay N (2003) Evaluation of equilibrium parameters characterizing metal oxide/electrolyte solution interface. Colloids Surfaces A Physicochem. Eng. Asp. 230:159–165. doi:10.1016/j.colsurfa.2003.09.022

    Article  Google Scholar 

  15. Sugimoto T, Kobayashi M, Adachi Y (2014) The effect of double layer repulsion on the rate of turbulent and Brownian aggregation: experimental consideration. Colloids Surfaces A Physicochem. Eng. Asp. 443:418–424. doi:10.1016/j.colsurfa.2013.12.002

    Article  CAS  Google Scholar 

  16. Borkovec M, Behrens SH, Semmler M (2000) Observation of the mobility maximum predicted by the standard electrokinetic model for highly charged amidine latex particles. Langmuir 16:5209–5212. doi:10.1021/la9916373

    Article  CAS  Google Scholar 

  17. Kobayashi M (2008) Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid Polym Sci 286:935–940. doi:10.1007/s00396-008-1851-9

    Article  CAS  Google Scholar 

  18. Chassagne C, Ibanez M (2012) Electrophoretic mobility of latex nanospheres in electrolytes: experimental challenges. Pure Appl Chem 85(1):41–51. doi:10.1351/PAC-CON-12-02-12

    Article  Google Scholar 

  19. Kobayashi M, Sasaki A (2014) Electrophoretic mobility of latex spheres in mixture solutions containing mono and divalent counter ions. Colloids Surfaces A Physicochem Eng Asp 440:74–78. doi:10.1016/j.colsurfa.2012.10.036

    Article  CAS  Google Scholar 

  20. Antonietti M, Vorwerg L (1997) Examination of the atypical electrophoretic mobility behavior of charged colloids in the low salt region using the O’Brian-White theory. Colloid Polym Sci 275:883–887. doi:10.1007/s003960050161

    Article  CAS  Google Scholar 

  21. Harding IH, Healy TW (1985) Electrical double layer properties of amphoteric polymer latex colloids. J Colloid Interface Sci 107:382–397. doi:10.1016/0021-9797(85)90191-2

    Article  CAS  Google Scholar 

  22. Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309:194–224. doi:10.1016/j.jcis.2006.12.075

    Article  CAS  Google Scholar 

  23. Lin W, Galletto P, Borkovec M (2004) Charging and aggregation of latex particles by oppositely charged dendrimers. Langmuir 20:7465–7473. doi:10.1021/la049006i

    Article  CAS  Google Scholar 

  24. Jachimska B, Kozlowska A, Pajor-Swierzy A (2012) Protonation of lysozymes and its consequences for the adsorption onto a mica surface. Langmuir 28:11502–11510. doi:10.1021/la301558u

    Article  CAS  Google Scholar 

  25. Gokarn YR, Fesinmeyer RM, Saluja A, Razinkov V, Chase SF, Laue TM, et al. (2011) Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci 20:580–587. doi:10.1002/pro.591

    Article  CAS  Google Scholar 

  26. Tan WF, Norde W, Koopal LK (2011) Humic substance charge determination by titration with a flexible cationic polyelectrolyte. Geochim Cosmochim Acta 75:5749–5761. doi:10.1016/j.gca.2011.07.015

    Article  CAS  Google Scholar 

  27. Kim JY, Ahn SH, Kang ST, Yoon BJ (2006) Electrophoretic mobility equation for protein with molecular shape and charge multipole effects. J Colloid Interface Sci 299:486–492. doi:10.1016/j.jcis.2006.02.003

    Article  CAS  Google Scholar 

  28. Allison SA, Potter M, McCammon JA (1997) Modeling the electrophoresis of lysozyme. II. Inclusion of ion relaxation. Biophys J 73:133–140. doi:10.1016/S0006-3495(97)78054-8

    Article  CAS  Google Scholar 

  29. Kuehner DE, Engmann J, Fergg F, Wernick M, Blanch HW, Prausnitz JM (1999) Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions. J Phys Chem B 103:1368–1374. doi:10.1021/jp983852i

    Article  CAS  Google Scholar 

  30. Tan WF, Koopal LK, Weng LP, van Riemsdijk WH, Norde W (2008) Humic acid protein complexation. Geochim Cosmochim Acta 72:2090–2099. doi:10.1016/j.gca.2008.02.009

    Article  CAS  Google Scholar 

  31. Lundin M, Macakova L, Dedinaite A, Claesson P (2008) Interactions between chitosan and SDS at a low-charged silica substrate compared to interactions in the bulk—the effect of ionic strength. Langmuir 24:3814–3827. doi:10.1021/la702653m

    Article  CAS  Google Scholar 

  32. Makino K, Ohshima H (2010) Electrophoretic mobility of a colloidal particle with constant surface charge density. Langmuir 26:18016–18019. doi:10.1021/la1035745

    Article  CAS  Google Scholar 

  33. Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J Colloid Interface Sci 90:17–26. doi:10.1016/0021-9797(82)90393-9

    Article  CAS  Google Scholar 

  34. Ohshima H (1994) A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci 168:269–271. doi:10.1006/jcis.1994.1419

    Article  CAS  Google Scholar 

  35. Hermans JJ, Fujita H (1955) Electrophoresis of charged polymer molecules with partial free drainage. Proc. K. Ned. Akad. Wet., Ser. B Phys. Sci. 58

  36. Ohshima H (1996) Henry’s function for electrophoresis of a cylindrical colloidal particle. J Colloid Interface Sci 180:299–301. doi:10.1006/jcis.1996.0305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the KAKENHI (15H04563) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyoshi Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, A., Kobayashi, M. Quantitative evaluation of shift of slipping plane and counterion binding to lysozyme by electrophoresis method. Colloid Polym Sci 294, 1019–1026 (2016). https://doi.org/10.1007/s00396-016-3852-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3852-4

Keywords

Navigation