Skip to main content
Log in

The formation of mixed micelles of sugar surfactants and phospholipids and their interactions with hyaluronan

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aggregation of sugar surfactants and the incorporation of phospholipids into sugar surfactant micelles were investigated by means of fluorescence spectroscopy. Two representatives from the family of alkyl glucosides were studied: dodecyl-β-D-maltoside and octyl-β-D-glucopyranoside. The presence of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) in the sugar surfactant system promoted the formation of new structures at sugar surfactant concentration below its critical micelle concentrations. According to the aggregation number measurements studied by a fluorescence quenching of hexadecylpyridinium chloride measurements, the premicellar aggregates formed from octyl-β-D-glucopyranoside and DPPC were composed of the third of molecules compared to the octyl-β-D-glucopyranoside micelles. Interactions of the formed mixed micelle systems composed of sugar surfactant and DPPC with hyaluronan were explored. The addition of hyaluronan had different effects on the dodecyl-β-D-maltoside/DPPC and octyl-β-D-glucopyranoside/DPPC mixed systems. In addition, the mixed system of dodecyl-β-D-maltoside and lecithin was studied, but possibly, only a coexistence of lipid aggregates and sugar surfactant micelles was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DM:

Dodecyl-β-D-maltoside

OG:

Octyl-β-D-glucopyranoside

EmPI:

Emission polarity index

ExPI:

Excitation polarity index

CMC:

Critical micelle concentrations

CPC:

Hexadecylpyridinium chloride monohydrate

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine

Hya:

Hyaluronan

CBA:

Concentration at the beginning of an aggregation

R 2 :

Reliability

References

  1. Thalberg K, Lindman B (1989) Interaction between hyaluronan and cationic surfactants. J Phys Chem 93:1478–1483. doi:10.1021/j100341a058

    Article  CAS  Google Scholar 

  2. Halasová T, Krouská J, Mravec F, Pekař M (2011) Hyaluronan-surfactant interactions in physiological solution studies by tensiometry and fluorescence probe techniques. Colloids Surf A 391:25–31. doi:10.1016/j.colsurfa.2011.05.035

    Article  Google Scholar 

  3. Kalbáčová M, Verdánová M, Mravec F, Halasová T, Pekař M (2014) Effect of CTAB in the presence of hyaluronan on selected human cell types. Colloids Surf A 460:204–208. doi:10.1016/j.colsurfa.2013.12.048

    Article  Google Scholar 

  4. Mravec F, Klučáková M, Pekař M (2011) Fluorescence spectroscopy study of hyaluronan-phospholipid interactions. In: Iglič A (ed) Advances in planar lipid bilayers and liposomes, 1st edn. Academic Press, Burlington, pp. 235–255

    Chapter  Google Scholar 

  5. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117. doi:10.1016/j.bbamem.2004.04.011

    Article  CAS  Google Scholar 

  6. Sasaki T, Demura M, Kato N, Mukai Y (2011) Sensitive detection of protein-lipid interaction change on bacteriorhodopsin using dodecyl β-d-maltoside. Biochemistry 50:2283–2290. doi:10.1021/bi101993s

    Article  CAS  Google Scholar 

  7. Aivaliotis M, Karas M, Tsiotis G (2007) An alternative strategy for the membrane proteome analysis of the green sulfur bacterium Chlorobium tepidum using blue native PAGE and 2-D PAGE on purified membranes. J Proteome Res 6:1048–1058. doi:10.1021/pr060553u

    Article  CAS  Google Scholar 

  8. Pham MD, Yu SSF, Han CC, Chan SI (2013) Improved mass spectrometric analysis of membrane proteins based on rapid and versatile sample preparation on nanodiamond particles. Anal Chem 85:6748–6755. doi:10.1021/ac400713g

    Article  CAS  Google Scholar 

  9. Angelov B, Ollivon M, Angelova A (1999) X-ray diffraction study of the effect of the detergent octyl glucoside on the structure of lamellar and nonlamellar lipid/water phases of use for membrane protein reconstitution. Langmuir 15:8225–8234. doi:10.1021/la9902338

    Article  CAS  Google Scholar 

  10. Does C, Manting EH, Kaufmann A, Lutz M, Driessen AJM (1998) Interaction between SecA and SecYEG in micellar solution and formation of the membrane-inserted state. Biochemistry 37:201–210. doi:10.1021/bi972105t

    Article  Google Scholar 

  11. Rouse SL, Sansom MSP (2015) Interactions of lipids and detergents with a viral ion channel protein: molecular dynamics simulation studies. J Phys Chem B 119:764–772. doi:10.1021/jp505127y

    Article  CAS  Google Scholar 

  12. Yokogawa M, Takeuchi K, Shimada I (2005) Bead-linked proteoliposomes: a reconstitution method for NMR analyses of membrane protein-ligand interactions. J Am Chem Soc 127:12021–12027. doi:10.1021/ja0511772

    Article  CAS  Google Scholar 

  13. Oku N, Tsudera J, Kurohane K, Okada S (1996) Effect of freeze-thawing on phospholipid/surfactant mixed bilayers. Chem Pharm Bull 44:1928–1930. doi:10.1248/cpb.44.1928

    Article  CAS  Google Scholar 

  14. Almgren M (2000) Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. Biochim Biophys Acta 1508:146–163. doi:10.1016/S0005-2736(00)00309-6

    Article  CAS  Google Scholar 

  15. Vinson PK, Talmon Y, Walter A (1989) Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J 56:669–681. doi:10.1016/S0006-3495(89)82714-6

    Article  CAS  Google Scholar 

  16. Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111. doi:10.1016/S0304-4157(00)00010-1

    Article  Google Scholar 

  17. de la Maza A, Lopez O, Baucells J, Gonzalez P, Parra JL (1998) Solubilization of phosphatidylcholine unilamellar liposomes caused by alkyl glucosides. J Surfactant Deterg 1:381–386. doi:10.1007/s11743-998-0039-x

    Article  Google Scholar 

  18. Eidelman O, Blumenthal R, Walter A (1988) Composition of octyl glucoside-phosphatidylcholine mixed micelles. Biochemistry 27:2839–2846. doi:10.1021/bi00408a027

    Article  CAS  Google Scholar 

  19. Ghosh S, Burman AD, De GC, Das AR (2011) Interfacial and self-organization of binary mixtures of anionic amphiphiles in aqueous medium. J Phys Chem B 115:11098–11112. doi:10.1021/jp204223t

    Article  CAS  Google Scholar 

  20. Mitra D, Chakraborty I, Bhattacharya SC, Moulik SP, Roy S, Das D, Das PK (2006) Physicochemical studies on cetylammonium bromide and its modified (mono-, di-, and trihydroxyethylated) head group analogues. Their Micellization Characteristics in Water and Thermodynamic and Structural Aspects of Water-in-Oil Microemulsions Formed with Them along with n-Hexanol and Isooctane. J Phys Chem B 110:11314–11326. doi:10.1021/jp055720c

    Article  CAS  Google Scholar 

  21. Aguiar J, Carpena P, Molina-Bolívar JA, Ruiz CC (2003) On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J Colloid Interface Sci 258:116–122. doi:10.1016/S0021-9797(02)00082-6

    Article  CAS  Google Scholar 

  22. Behera K, Pandey S (2007) Concentration-dependent dual behavior of hydrophilic ionic liquid in changing properties of aqueous sodium dodecyl sulfate. J Phys Chem B 111:13307–13315. doi:10.1021/jp076430u

    Article  CAS  Google Scholar 

  23. Hierrezuelo JM, Aguiar J, Carnero Ruiz C (2004) Stability, interaction, size, and microenvironmental properties of mixed micelles of decanoyl-N-methylglucamide and sodium dodecyl sulfate. Langmuir 20:10419–10426. doi:10.1021/la048278i

    Article  CAS  Google Scholar 

  24. Céu Rei M, Coutinho P, Castanheira EMS, Real Oliveira MECD (2004) C12E7-DPPC mixed systems studied by pyrene fluorescence emision. Progr Colloid Polym Sci 123:83–87. doi:10.1007/978-3-540-36462-7_20

    Google Scholar 

  25. Li M, Jiang M (1997) Fluorescence studies of hydrophobic association of fluorocarbon-modified poly(N-isopropylacrylamide). Macromolecules 30:470–478. doi:10.1021/ma960966o

    Article  CAS  Google Scholar 

  26. Li X, Ji J, Shen J (2006) Synthesis of hydroxyl-capped comb-like poly(ethylene glycol) to develop shell cross-linkable micelles. Polymer 47:1987–1994. doi:10.1016/j.polymer.2006.01.011

    Article  CAS  Google Scholar 

  27. Urbano B, Silva P, Olea AF, Fuentes I, Martinez F (2008) Self-assembly of triblock copolymers in aqueous solution. J Chil Chem Soc 53:1507–1510. doi:10.4067/S0717-97072008000200013

    Article  CAS  Google Scholar 

  28. Sackett DL, Wolf J (1987) Nile Red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem 167:228–234. doi:10.1016/0003-2697(87)90157-6

    Article  CAS  Google Scholar 

  29. Ghoneim N (2000) Photophysics of Nile Red in solution: steady state spectroscopy. Spectrochim Acta A 56:1003–1010. doi:10.1016/S1386-1425(99)00199-7

    Article  CAS  Google Scholar 

  30. Dar AA, Garai A, Das AR, Ghosh S (2010) Rheological and fluorescence investigation of interaction between hexadecyltrimethylammonium bromide and methylcellulose in the presence of hydrophobic salts. J Phys Chem A 114:5083–5091. doi:10.1021/jp911545j

    Article  CAS  Google Scholar 

  31. Lipfert J, Columbus L, Chu VB, Lesley SA, Doniach S (2007) Size and shape of detergent micelles by small-angle scattering. J Phys Chem B 111:12427–12438. doi:10.1021/jp0730161

    Article  CAS  Google Scholar 

  32. Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L (2013) Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS One 8(5):e62488. doi:10.1371/journal.pone.0062488

    Article  CAS  Google Scholar 

  33. Dupuy C, Auvray X, Petipas C, Rico-Lattes I, Lattes A (1997) Anomeric effects on the structure of micelles of alkyl maltosides in water. Langmuir 13:3965–3967. doi:10.1021/la9604285

    Article  CAS  Google Scholar 

  34. Thermo Fisher Scientific Inc.: n-Dodecyl-beta-D-Matoside: https://www.lifetechnologies.com/order/catalog/product/89902. Accessed 30 July 2015

  35. Lorber B, Bishop JB, DeLucas LJ (1990) Purification of octyl [beta]-d-glucopyranoside and re-estimation of its micellar size. Biochim Biophys Acta 1023:254–265. doi:10.1016/0005-2736(90)90421-J

    Article  CAS  Google Scholar 

  36. Maivaldová (2010) Interaction of phospholipids with polyelectrolytes in aqueous medium. Diploma thesis, Brno University of Technology

Download references

Acknowledgments

This work was supported by Project Nr. LO1211, Materials Research Centre at FCH BUT-Sustainability and Development (National Program for Sustainability I, Ministry of Education, Youth and Sports of the Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Mravec.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by Project Nr. LO1211, Materials Research Centre at FCH BUT-Sustainability and Development (National Program for Sustainability I, Ministry of Education, Youth and Sports of the Czech Republic).

Electronic supplementary material

ESM 1

(DOCX 549 kb)

Supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdíková, J., Mravec, F. & Pekař, M. The formation of mixed micelles of sugar surfactants and phospholipids and their interactions with hyaluronan. Colloid Polym Sci 294, 823–831 (2016). https://doi.org/10.1007/s00396-016-3840-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3840-8

Keywords

Navigation