Skip to main content

Advertisement

Log in

Ionic liquid mediated synthesis of poly(2-hydroxyethyl methacrylate-block-methyl methacrylate)/Fe3O4 core–shell structured nanocomposite by ATRP method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A hybrid nanocomposite of magnetic nanoparticles (Fe3O4) and poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) (PHEMA-b-PMMA) was synthesized successfully by the atom transfer radical polymerization (ATRP) in an ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6). Fe3O4 nanoparticles were first surface-modified with the initiator, 2-bromoisobutyryl bromide (BiBBr), in dimethylformamide (DMF) solvent, which produced the macro-initiator, Fe3O4-BiB, to initiate the polymerization reactions for the synthesis of the block polymer, PHEMA-b-PMMA. After immobilizing the initiator on the surface of Fe3O4, the block polymer chains were grafted successfully onto the Fe3O4 surface, causing the formation of a core-shell nanostructure. The incorporation of Fe3O4 in the nanocomposite was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The thermal stability and magnetic properties increased with increasing amount of Fe3O4 in the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Super paramagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  CAS  Google Scholar 

  2. Xu C, Sun S (2012) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743

    Article  Google Scholar 

  3. Shanmugam V, Selvakumar S, Yeh CS (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43:6254–6287

    Article  CAS  Google Scholar 

  4. Mu B, Wang T, Wu Z, Shi H, Xue D, Liu P (2011) Fabrication of functional block copolymer grafted superparamagnetic nanoparticles for targeted and controlled drug delivery. Colloids Surf A 375:163–168

    Article  CAS  Google Scholar 

  5. Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738

    Article  CAS  Google Scholar 

  6. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):1–43

    Article  Google Scholar 

  7. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125:10192–10193

    Article  CAS  Google Scholar 

  8. Saiyed ZM, Ramchand CN, Telang SD (2008) Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support. J Phys Condens Matter 20(20):204153

    Article  CAS  Google Scholar 

  9. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  Google Scholar 

  10. Hong J, Xu D, Gong P, Yu J, Ma H, Yao S (2008) Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels. Micropor Mesopor Mater 109:470–477

    Article  CAS  Google Scholar 

  11. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407

    Article  CAS  Google Scholar 

  12. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587

    Article  CAS  Google Scholar 

  13. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280

    Article  CAS  Google Scholar 

  14. Hua MY, Yang HW, Liu HL, Tsai RY, Pang ST, Chuang KL, Chang YS, Hwang TL, Chang YH, Chuang HC, Chuang CK (2011) Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy. Biomaterials 32:8999–9010

    Article  CAS  Google Scholar 

  15. Häfeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM (1995) Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22:147–155

    Article  Google Scholar 

  16. Yang HW, Hua MY, Liu HL, Huang CY, Wei KC (2012) Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl 5:73–86

    CAS  Google Scholar 

  17. Ying XY, Du YZ, Hong LH, Yuan H, Hu FQ (2011) Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: preparation and characteristics. J Magn Magn Mater 323:1088–1093

    Article  CAS  Google Scholar 

  18. Bogdanov Jr AA, Martin C, Weissleder R, Brady TJ (1994) Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes. Biochim Biophys Acta 1193:212–218

    Article  CAS  Google Scholar 

  19. Jiang W, Sun Z, Li F, Chen K, Liu T, Liu J, Zhou T, Guo R (2011) A novel approach to preparing magnetic protein microspheres with core-shell structure. J Magn Magn Mater 323:435–439

    Article  CAS  Google Scholar 

  20. Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC (2011) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32:2183–2193

    Article  CAS  Google Scholar 

  21. Bi F, Zhang J, Su Y, Tang YC, Liu JN (2009) Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 30:5125–5130

    Article  CAS  Google Scholar 

  22. Bradbury M, Hricak H (2005) Molecular MR imaging in oncology. Magn Reson Imaging Clin N Am 13:225–240

    Article  Google Scholar 

  23. Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214–222

    Article  CAS  Google Scholar 

  24. Xiong L, Liang H, Wang R, Chen L (2011) A novel route for the synthesis of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) grafted titania nanoparticles via ATRP. J Polym Res 18:1017–1021

    Article  CAS  Google Scholar 

  25. Wang W, Cao H, Zhu G, Wang P (2010) A facile strategy to modify TiO2 nanoparticles via surface-initiated ATRP of styrene. J Polym Sci A Polym Chem 48:1782–1790

  26. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039

    Article  CAS  Google Scholar 

  27. Zhou Y, Qiu L, Deng Z, Texter J, Yan F (2011) Low-temperature AGET ATRP of methyl methacrylate in ionic liquid-based microemulsions. Macromolecules 44:7948–7955

    Article  CAS  Google Scholar 

  28. Carmichael AJ, Haddleton DM (2002) Polymer synthesis in ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley-VCH, Weinheim, pp 319–335

    Chapter  Google Scholar 

  29. Harrisson S, Mackenzie SR, Haddleton DM (2003) Pulsed laser polymerization in an ionic liquid: strong solvent effects on propagation and termination of methyl methacrylate. Macromolecules 36:5072–5075

    Article  CAS  Google Scholar 

  30. Perrier S, Davis TP, Carmichael AJ, Haddleton DM (2003) Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate. Eur Polym J 39:417–422

    Article  CAS  Google Scholar 

  31. Biedroń T, Kubisa P (2003) Ionic liquids as reaction media for polymerization processes: atom transfer radical polymerization (ATRP) of acrylates in ionic liquids. Polym Int 52:1584–1588

    Article  Google Scholar 

  32. Gupta MK, Bajpai J, Bajpai AK (2014) The biocompatibility and water uptake behavior of superparamagnetic poly(2-hydroxyethyl methacrylate)-magnetite nanocomposites as possible nanocarriers for magnetically mediated drug delivery system. J Polym Res 21(8):1–17

    Article  CAS  Google Scholar 

  33. Horák D, Hlídková H, Hradil J, Lapčíková M, Šlouf M (2008) Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: preparation and characterization. Polymer 49:2046–2054

    Article  Google Scholar 

  34. Abraham S, Brahim S, Ishihara K, Guiseppi-Elie A (2005) Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26:4767–4778

  35. Chirila T, Hicks CR, Dalton PD, Vijayasekaran S, Lou X, Hong Y, Clayton AB, Ziegelaar BW, Fitton JH, Platten S, Crawford GJ, Constable IJ (1998) Artificial cornea. Prog Polym Sci 23:447–473

    Article  CAS  Google Scholar 

  36. Karthick R, Sirisha P, Ravi Sankar M (2014) Mechanical and tribological properties of PMMA-sea shell based biocomposite for dental application. Procedia Materials Science 6:1989–2000

    Article  CAS  Google Scholar 

  37. Fan Z, Gong F, Nguyen ST, Duong HM (2015) Advanced multifunctional graphene aerogel-poly(methyl methacrylate) composites: experiments and modelling. Carbon 81:396–404

    Article  CAS  Google Scholar 

  38. Nguyen VH, Haldorai Y, Pham QL, Shim JJ (2011) Supercritical fluid mediated synthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite. Mater Sci Eng B 176:773–778

  39. Carmichael AJ, Haddleton DM, Bon SAF, Seddon KR (2000) Copper(I) mediated living radical polymerisation in an ionic liquid. Chem Commun: 1237–1238

  40. Minami H, Yoshida K, Okubo M (2008) Preparation of polystyrene particles by dispersion polymerization in an ionic liquid. Macromol Rapid Commun 29:567–572

    Article  CAS  Google Scholar 

  41. Ferk G, Krajnc P, Hamler A, Mertelj A, Cebollada F, Drofenik M, Lisjak D (2015) Monolithic magneto-optical nanocomposites of barium hexaferrite platelets in PMMA. Sci Rep 5:11395–11403

    Article  Google Scholar 

  42. Roy S, Yue CY, Venkatraman SS, Ma LL (2011) Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces. J Mater Chem 21:15031–15040

  43. Hirata T, Matsuno H, Tanaka M, Tanaka K (2011) Surface segregation of poly(2-methoxyethyl acrylate) in a mixture with poly(methyl methacrylate). Phys Chem Chem Phys 13:4928–4934

    Article  CAS  Google Scholar 

  44. Versace DL, Dubot P, Cenedese P, Lalevée J, Soppera O, Malval JP, Renard E, Langlois V (2012) Natural biopolymer surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-photoinduced modification with triarylsulfonium salts. Green Chem 14:788–798

    Article  CAS  Google Scholar 

  45. Lin SL, Wen XF, Cai ZQ, Pi PH, Zheng DF, Cheng J, Zhang LJ, Qian Y, Yang ZR (2011) Synthesis and dissipative particle dynamics simulation of cross-linkable fluorinated diblock copolymers: self-assembly aggregation behavior in different solvents. Phys Chem Chem Phys 13:17323–17332

    Article  CAS  Google Scholar 

  46. Hou C, Lin S, Liu F, Hu J, Zhang G, Liu G, Tu Y, Zou H, Luo H (2014) Synthesis of poly(2-hydroxyethyl methacrylate) end-capped with asymmetric functional groups via atom transfer radical polymerization. New J Chem 38:2538–2547

    Article  CAS  Google Scholar 

  47. Islam MR, Bach LG, Lim KT (2013) Poly(2-hydroxyethyl methacrylate) grafted halloysite nanotubes as a molecular host matrix for luminescent ions prepared by surface-initiated RAFT polymerization and coordination chemistry. Appl Surf Sci 276:298–305

    Article  CAS  Google Scholar 

  48. Maegawa M, Ajiro H, Kamei D, Akashi M (2013) A study on template effects using irregular porous isotactic poly(methyl methacrylate) films constructed with syndiotactic rich poly(methacrylic acid) and isotactic poly(methyl methacrylate). Polym J 45:898–903

    Article  CAS  Google Scholar 

  49. Sreeja V, Joy PA (2011) Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran. Int J Nanotechnol 8:907–915

    Article  CAS  Google Scholar 

  50. Tartaj P, González-Carreño T, Serna CJ (2003) Magnetic behavior of γ-Fe2O3 nanocrystals dispersed in colloidal silica particles. J Phys Chem B 107:20–24

Download references

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A1031189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Jin Shim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, V.C., Nguyen, V.H., Tuma, D. et al. Ionic liquid mediated synthesis of poly(2-hydroxyethyl methacrylate-block-methyl methacrylate)/Fe3O4 core–shell structured nanocomposite by ATRP method. Colloid Polym Sci 294, 777–785 (2016). https://doi.org/10.1007/s00396-016-3835-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3835-5

Keywords

Navigation