Skip to main content
Log in

Completely engulfed olive/silicone oil Janus emulsions with gelatin and chitosan

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Janus emulsions, formed by mixing two oil components (i.e., olive oil (OO) and silicone oil (SiO)) with water in the presence of two surface active biopolymers, i.e., gelatin and chitosan, are investigated in more detail. The stability of Janus droplets formed strongly depends on the polymer components used. The mixture of both biopolymers represents an extraordinary effect which can be related to the complex formation of gelatin and chitosan. Taken into account that under the given pH conditions, in the acidic pH range between 4 and 6, below the isoelectric point of gelatin, both polymers are polycations, one can conclude that non-Coulombic interactions are of relevance for the enhanced surface activity of the complexes. Dynamic interfacial tension (γ) measurements by using the drop profile analysis tensiometry (PAT) indicate a strong adsorption of the polymer complexes at the olive oil/water interface in contrast to the silicone/water interface. In a first step, the polymer complexes are adsorbed at the interface, and in a second step, a more rigid skin-like polymer layer is formed. This first example of a polymer-stabilized Janus emulsion opens new perspectives for the application, e.g., in food emulsions or for making scaffold materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erhardt R, Zhang M, Boker A, Zettl H, Abetz C, Frederik P, Krausch G, Abetz V, Muller AHE (2003) Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemipheres. J. Am. Chem. Soc 125:3260–3267

    Article  CAS  Google Scholar 

  2. Walther A, Muller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261

    Article  CAS  Google Scholar 

  3. Liu B, Wei W, Qu X, Yang Z (2008) Colloids formed by biphasic grafting at a Pickering emulsion interface. Angew Chem Int Ed 47:3973–3975

    Article  CAS  Google Scholar 

  4. Berger S, Snytska A, Ionov L, Eichhorn K-J, Stamm M (2008) Stimuli-responsive bicomponent polymer Janus particles by „grafting to“ approaches. Macromolecules 41:9669–9676

    Article  CAS  Google Scholar 

  5. Binks BP, Fletcher PDI (2001) Particles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir 17:4708–4710

    Article  CAS  Google Scholar 

  6. Glaser N, Adams DJ, Boker A, Krausch G (2006) Janus particles at liquid-liquid interfaces. Langmuir 22:5227–5229

    Article  CAS  Google Scholar 

  7. Nisiako T, Torii T (2007) Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv Mater 19:1489

    Article  Google Scholar 

  8. Hasinovic H, Friberg SE (2011) Destabilization mechanism in a triple emulsion with Janus drops. J Colloid Interface Sci 361:581–586

    Article  CAS  Google Scholar 

  9. Hasinovic H, Friberg SE (2011) One-step inversion process to a Janus emulsion with two mutually insoluble oils. Langmuir 27:6584–6588

    Article  CAS  Google Scholar 

  10. Aserin A (ed) (2008) Multiple emulsions: technology and applications. Wiley, Hoboken

    Google Scholar 

  11. Tadros TF (2008) Colloid aspects of cosmetic formulations with particular reference to polymeric surfactants. In: Tadros TF (ed) Colloids in cosmetics and personal care. Weinheim, VCH

    Chapter  Google Scholar 

  12. Guzowski J, Korczyk PM, Jakiela S, Gartstecki P (2012) The structure and the stability of the multiple micro-droplets. Soft Matter 8:3269–3278

    Article  Google Scholar 

  13. Ge L, Lu S, Han J, Guo R (2015) Anisotropic particles templated by Janus emulsion. Chem. Comm. 51:7432–7434

    Article  CAS  Google Scholar 

  14. Neeson MJ, Tabor RF, Grieser F, Dagastine RR, Chan DYC (2012) Compound sessile drops. Soft Matter 8:11042–11050

    Article  CAS  Google Scholar 

  15. Hasinovic H, Friberg SE, Kovach I, Koetz J (2014) Destabilization of a dual emulsion to form a Janus emulsion. Colloid Polym Sci 292:2319–2324

    Article  CAS  Google Scholar 

  16. Kovach I, Koetz J, Friberg SE (2014) Janus emulsions stabilized by phospholipids. Colloids Surf A 441:66–71

    Article  CAS  Google Scholar 

  17. Friberg SE, Kovach I, Koetz J (2013) Equilibrium topology and partial inversion of Janus drops: a numerical analysis. Chem Phys Chem 14:3772–3776

    CAS  Google Scholar 

  18. Koetz J, Kosmella S (2007) Polyelectrolytes and nanoparticles. Springer, Berlin Heidelberg

    Google Scholar 

  19. Klinkesorn U (2013) The role of chitosan in emulsion formation and stabilization. Food Rev Int 29:371–393

    Article  CAS  Google Scholar 

  20. Hong Y-H, McClements DJ (2007) Modulation of pH sensitivity of surface charge and aggregation stability of protein-coated lipid droplets by chitosan addition. Food Biophys. 2:46–55

    Article  Google Scholar 

  21. Li Y, Xiao M, Du Y, Decker EA, McClements DJ (2010) Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. Eur J Pharm Biopharm 76:38–47

    Article  CAS  Google Scholar 

  22. Kovach I, Kosmella S, Prietzel C, Bagdahn C, Koetz J (2015) Nano-porous calcium phosphate balls. Colloids Surf. B 132:246–252

    Article  CAS  Google Scholar 

  23. Hasinovic H, Boggs C, Friberg SE, Kovach I, Koetz J (2014) Janus emulsions from a one-step process; optical microscopy images. J Dispers Sci Technol 35:613–618

    Article  CAS  Google Scholar 

  24. Seifert AM, Wendorff JH (1992) Spinning drop experiments on interfacial phenomena: theoretical background and experimental evidence. Colloid Polym Sci 270:962–971

    Article  CAS  Google Scholar 

  25. Dopierala K, Javadi A, Krägel J, Schano K-H, Kalogianni EP, Leser ME, Miller R (2011) Colloids Surf. A 382:261–265

    Article  CAS  Google Scholar 

  26. He Q, Zhang Y, Lu G, Miller R, Möhwald H, Li J (2008) Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces. Adv. Colloid Interf. Sci 140:667–676

    Article  Google Scholar 

  27. Rinaudo M (1989) A. Domard. In: Skjak-Braek G, Anthonsen T, Sandford P (eds) Chitin and chitosan: sources, chemistry, biochemistry, physical properties, and applications. Elsevier Applied Science, London, pp. 71–86

    Google Scholar 

  28. J. Kötz, S. Kosmella, Polyelectrolyte complex formation with chitosan, In: A. Domard, G.A.F. Roberts, K.M. Varum (Eds.), Advances in Chitin Science Vol. II, Jaques Andre Publisher, 1998, 476–483.

  29. Lai J-Y, Lu P-L, Chen K-H, Tabata Y, Hsiue G-H (2006) Effects of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules 7:1836–1844

    Article  CAS  Google Scholar 

  30. Philipp B, Dautzenberg H, Linow KJ, Kötz J, Dawydoff W (1989) Polyelectrolyte complexes – recent developments and open problems. Prog Polym Sci 14:91–172

    Article  CAS  Google Scholar 

  31. Note C, Koetz J, Kosmella S (2006) Structural changes in poly(ethyleneimine) modified microenmulsions. J Colloid Interface Sci 302:662–668

    Article  CAS  Google Scholar 

  32. Fechner M, Kramer M, Kleinpeter E, Koetz J (2009) Polyampholyte-modified microemulsions. Colloid Polym Sci 287:1145–1153

    Article  CAS  Google Scholar 

  33. Lee HB, Jhon MS, Andrade JD (1975) Nature of water in synthetic hydrogels. I. Dilatometry, specific conductivity, and differential scanning calorimetry of polyhydroxyethyl methacrylate. J. Colloid Interface Sci 51:225–231

    Article  CAS  Google Scholar 

  34. Yin YJ, Yao KD, Cheng GX, Ma JB (1999) Properties of polyelectrolyte complex films of chitosan and gelatin. Polym Int 48:429–433

    Article  CAS  Google Scholar 

  35. Werner F, Mersmann A (1999) About the rheology of polymer solutions. Chem. Eng. Technol. 7:559–562

    Google Scholar 

  36. Kulicke W-M, Clasen C (2004) Viscometry of polymers and polyelectrolytes. Springer, Berlin Heidelberg

    Book  Google Scholar 

  37. Wang Y, Qiu D, Cosgrove T, Denbow ML (2009) A small-angle neutron scattering and rheology study of the composite of chitosan and gelatine. Colloids Surf B 70:254–258

    Article  CAS  Google Scholar 

  38. M.M. Beisebekov, S.B. Serikpayeva, Sh.N. Zhumagalieva, M.K. Beisebekov, Zh.A. Abilov, S. Kosmella, J. Koetz, Interactions of bentonite clay in composite gels of non-ionic polymers with cationic surfactants and heavy metal ions, Colloid Polym Sci 293 (2015) 633–639.

  39. Bertz A, Wöhl-Bruhn S, Miethe S, Tiersch B, Koetz J, Hust M, Bunjes H, Menzel H (2013) Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: comparison of network structure and drug size. J Biotechnol 163:243–249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Koetz.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovach, I., Won, J., Friberg, S.E. et al. Completely engulfed olive/silicone oil Janus emulsions with gelatin and chitosan. Colloid Polym Sci 294, 705–713 (2016). https://doi.org/10.1007/s00396-016-3828-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3828-4

Keywords

Navigation