Skip to main content
Log in

Study of pH-responsive surface active ionic liquids: the formation of spherical and wormlike micelles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A noncovalent bonding method is utilized for forming pH-responsive surface active ionic liquids in mixed N-hexadecyl-N-methylpyrrolidinium bromide-based cationic surfactant (C16MPBr) and potassium phthalic acid (PPA). Rheology, cryogenic-transmission electron microscopy, and dynamic light scattering results revealed that the microstructure transition between spherical micelles and wormlike micelles was the fundamental cause of the pH-sensitive rheological properties. In addition, combined with nuclear magnetic resonance and UV–vis analysis, we found that the structure transition of micelles was attributed to different binding abilities of hydrotropes to C16MPBr as pH varies. It is confirmed that the binding ability of PPA to C16MPBr is strongest. This noncovalent bonding method is not only versatile but also economical for fabricating pH-responsive surface active ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nagarajan R (2002) Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38

    Article  CAS  Google Scholar 

  2. Takacs CJ, Sun Y, Welch GC, Perez LA, Liu X, Wen W, Bazan GC, Heeger AJ (2012) Solar cell efficiency, self-assembly, and dipole–dipole interactions of isomorphic narrow-band-gap molecules. J Am Chem Soc 134:16597–16606

    Article  CAS  Google Scholar 

  3. Gazit E (2002) A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    Article  CAS  Google Scholar 

  4. Kalsin AM, Fialkowski M, Paszewski M, Smoukov SK, Bishop KJ, Grzybowski BA (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424

    Article  CAS  Google Scholar 

  5. Lalatonne Y, Richardi J, Pileni M (2004) Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater 3:121–125

    Article  CAS  Google Scholar 

  6. Simard M, Su D, Wuest JD (1991) Use of hydrogen bonds to control molecular aggregation. self-assembly of three-dimensional networks with large chambers. J Am Chem Soc 113:4696–4698

    Article  CAS  Google Scholar 

  7. Lin Z, Cai J, Scriven L, Davis H (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993

    Article  CAS  Google Scholar 

  8. Kotov N (1999) Layer-by-layer self-assembly: the contribution of hydrophobic interactions. Nanostruct Mater 12:789–796

    Article  Google Scholar 

  9. Cates M, Candau S (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869

    Article  CAS  Google Scholar 

  10. Maitland G (2000) Oil and gas production. Curr Opin Colloid Interface Sci 5:301–311

    Article  CAS  Google Scholar 

  11. Lühmann B, Finkelmann H (1986) A lyotropic nematic phase of lamellar micelles (N L) obtained by a non-ionic surfactant in aqueous solution. Colloid Polym Sci 264:189–192

    Article  Google Scholar 

  12. Chu Z, Dreiss CA, Feng Y (2013) Smart wormlike micelles. Chem Soc Rev 42:7174–7203

    Article  CAS  Google Scholar 

  13. Maeda H, Tanaka S, Ono Y, Miyahara M, Kawasaki H, Nemoto N, Almgren M (2006) Reversible micelle-vesicle conversion of oleyldimethylamine oxide by pH changes. J Phys Chem B 110:12451–12458

    Article  CAS  Google Scholar 

  14. Zhou SL, Matsumoto S, Tian HD, Yamane H, Ojida A, Kiyonaka S, Hamachi I (2005) pH‐responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules. Chem-A Europ J 11:1130–1136

    Article  CAS  Google Scholar 

  15. Wasungu L, Scarzello M, van Dam G, Molema G, Wagenaar A, Engberts JB, Hoekstra D (2006) Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications. J Mol Med 84:774–784

    Article  CAS  Google Scholar 

  16. Dai C, Yan Z, You Q, Du M, Zhao M (2014) Formation of worm-like micelles in mixed N-hexadecyl-N-methylpyrrolidinium bromide-based cationic surfactant and anionic surfactant systems. PLoS One 9:e102539

    Article  Google Scholar 

  17. Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20:417–437

    Article  CAS  Google Scholar 

  18. Kern F, Lequeux F, Zana R, Candau S (1994) Dynamic properties of salt-free viscoelastic micellar solutions. Langmuir : ACS J Surf Colloid 10:1714–1723

    Article  CAS  Google Scholar 

  19. Heymans N, Bauwens J-C (1994) Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol Acta 33:210–219

    Article  CAS  Google Scholar 

  20. Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719

    Article  CAS  Google Scholar 

  21. Baumgaertel M, Winter H (1992) Interrelation between continuous and discrete relaxation time spectra. J Non-Newtonian Fluid Mech 44:15–36

    Article  CAS  Google Scholar 

  22. Rodriguez C, Acharya DP, Hattori K, Sakai T, Kunieda H (2003) Phase and rheological behavior of surfactant/novel alkanolamide/water systems. Langmuir : ACS J Surf Colloid 19:8692–8696

    Article  CAS  Google Scholar 

  23. Takahashi K (1968) Application of the Cole–Cole plot to the study of adsorption kinetics at the mercury/electrolyte-solution interface. Electrochim Acta 13:1609–1621

    Article  CAS  Google Scholar 

  24. Clausen T, Vinson P, Minter J, Davis H, Talmon Y, Miller W (1992) Viscoelastic micellar solutions: microscopy and rheology. J Phys Chem 96:474–484

    Article  CAS  Google Scholar 

  25. Attal S, Thiruvengadathan R, Regev O (2006) Determination of the concentration of single-walled carbon nanotubes in aqueous dispersions using UV-visible absorption spectroscopy. Anal Chem 78:8098–8104

    Article  CAS  Google Scholar 

  26. Hassan P, Raghavan SR, Kaler EW (2002) Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir : ACS J Surf Colloid 18:2543–2548

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the donors of the National Science Fund for Distinguished Young Scholars (51425406), National Natural Science Foundation of China (21303268), and the Fundamental Research Funds for the Central Universities (15CX06022A) for generous support of our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihu Yan or Caili Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Dai, C., Zhao, M. et al. Study of pH-responsive surface active ionic liquids: the formation of spherical and wormlike micelles. Colloid Polym Sci 293, 1759–1766 (2015). https://doi.org/10.1007/s00396-015-3552-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3552-5

Keywords

Navigation