Skip to main content
Log in

pH-responsible Pickering emulsion and its catalytic application for reaction at water–oil interface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, pH-responsible Pickering emulsion stabilized by polymer-metal hybrid micelles and its catalytic application for reaction at oil–water interface were presented. Employing Au@poly(ethylene oxide)-b-poly(4-vinylpyridine) polymer-metal hybrid micelles as emulsifier, n-decanol in water Pickering emulsion was first generated. The produced Pickering emulsion displayed reversible emulsification/demulsification with pH variation of the water phase, and this pH-induced emulsification/demulsification could undergo multiple cycles with only a slight reduction in emulsion performance. Dynamic light scattering, zeta potential measurement, and interfacial tension measurement, as well as transmission electron microscopy characterization, all showed that this reversible emulsification/demulsification cycle was the result of the tunable wettabilities of the core cross-linked hybrid emulsifier micelles with pH variation. Benefited from the excellent catalytic performances of the implanted Au nanoparticles at the oil–water interface and the large interfacial area of the emulsion droplets together with the pH-responsible reversible emulsification/demulsification cycle, the generated Pickering emulsion could readily applied as a catalytic microreactor for a broad of organic reactions occurred in water medium. As a proof of the concept, Au catalyzed reduction reaction of p-nitroanisole by NaBH4 was investigated. The catalyst showed both a highly catalytic activity  with a good recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Pickering SU (1907) Emulsions. J Chem Soc Trans 91:2001–2021

    Article  Google Scholar 

  2. Zhang K, Wu W, Guo K, Chen J, Zhang P (2009) Magnetic polymer enhanced hybrid capsules prepared from a novel pickering emulsion polymerization and their application in controlled drug release. Colloids Surf A 349:110–116

    Article  CAS  Google Scholar 

  3. Horikoshia S, Akaob Y, Ogurac T, Sakaib H, Abeb M, Serponed N (2010) On the stability of surfactant-free water-in-oil emulsions and synthesis of hollow SiO2 nanospheres. Colloids Surf A 372:55–60

    Article  Google Scholar 

  4. Yin D, Zhang Q, Yin C, Zhao X, Zhang H (2012) Hollow microspheres with covalent-bonded colloidal and polymeric shell by pickering emulsion polymerization. Polym Adv Technol 23:273–277

    Article  CAS  Google Scholar 

  5. Masliyah J, Zhou ZJ, Xu Z, Czarnecki J, Hamza H (2004) Understanding water-based bitumen extraction from athabasca oil sands. Can J Chem Eng 82:628–654

    Article  CAS  Google Scholar 

  6. Tan H, Zhang P, Wang L, Yang D, Zhou K (2011) Multifunctional amphiphilic carbonaceous microcapsules catalyze water/oil biphasic reactions. Chem Commun 47:11903–11905

    Article  CAS  Google Scholar 

  7. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  CAS  Google Scholar 

  8. Klapper M, Nenov S, Haschick R, Müller K, Müllen K (2008) Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles. Acc Chem Res 41:1190–1201

    Article  CAS  Google Scholar 

  9. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilized solely by colloidal particles. Adv Colloid Interface Sci 100:503–546

    Article  Google Scholar 

  10. Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327:68–72

    Article  CAS  Google Scholar 

  11. Binks BP, Philip J, Rodrigues JA (2005) Inversion of silica-stabilized emulsions induced by particle concentration. Langmuir 21:3296–3302

    Article  CAS  Google Scholar 

  12. Bon SA, Chen T (2007) Pickering stabilization as a tool in the fabrication of complex nanopatterned silica microcapsules. Langmuir 23:9527–9530

    Article  CAS  Google Scholar 

  13. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186

    Article  CAS  Google Scholar 

  14. Shen M, Resasco DE (2009) Emulsions stabilized by carbon nanotube-silica nanohybrids. Langmuir 25:10843–10851

    Article  CAS  Google Scholar 

  15. Venkataraman P, Sunkara B, St Dennis JE, He J, John VT, Bose A (2011) Water-in-trichloroethylene emulsions stabilized by uniform carbon microspheres. Langmuir 28:1058–1063

    Article  Google Scholar 

  16. Li W, Yu Y, Lamson M, Silverstein MS, Tilton RD, Matyjaszewski K (2012) PEO-based star copolymers as stabilizers for water-in-oil or oil-in-water emulsions. Macromolecules 45:9419–9426

    Article  CAS  Google Scholar 

  17. Qiu Q, Liu G, An Z (2011) Efficient and versatile synthesis of star polymers in water and their use as emulsifiers. Chem Commun 47:12685–12687

    Article  CAS  Google Scholar 

  18. Chen Q, Cao X, Liu H, Zhou W, Qin L, An Z (2013) pH-responsive high internal phase emulsions stabilized by core cross-linked star (CCS) polymers. Polym Chem 4:4092–4102

    Article  CAS  Google Scholar 

  19. Larson-Smith K, Pozzo DC (2012) Pickering emulsions stabilized by nanoparticle surfactants. Langmuir 28:11725–11732

    Article  CAS  Google Scholar 

  20. Liu L, Zhang J, Wu C, Zhao H (2008) Surface-active gold nanoparticles with mixed polymer brushes as surfactants in the preparation of polystyrene colloid particles. Macromol Rapid Commun 29:45–51

    Article  Google Scholar 

  21. He X, Ge X, Liu H, Wang M, Zhang Z (2005) Synthesis of cage like polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface. Chem Mater 17:5891–5892

    Article  CAS  Google Scholar 

  22. Yi C, Yang Y, Zhu Y, Liu N, Liu X, Luo J, Jiang M (2012) Self-assembly and emulsification of poly{[st-alt-maleicacid]-co-[st-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]}. Langmuir 28:9211–9222

    Article  CAS  Google Scholar 

  23. Wei Z, Wang C, Zou S, Liu H, Tong Z (2012) Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive pickering emulsions and PLGA microcapsules. Polymer 53:1229–1235

    Article  CAS  Google Scholar 

  24. Zhao C, Tan J, Li W, Tong K, Xu J, Sun D (2013) Ca2+ ion responsive pickering emulsions stabilized by PSSMA nanoaggregates. Langmuir 29:14421–14428

    Article  CAS  Google Scholar 

  25. Liu H, Wang C, Zou S, Wei Z, Tong Z (2012) Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification. Langmuir 28:11017–11024

    Article  CAS  Google Scholar 

  26. Wongkongkatep P, Manopwisedjaroen K, Tiposoth P, Archakunakorn S, Pongtharangkul T, Suphantharika M, Honda K, Hamachi I, Wongkongkatep J (2012) Bacteria interface pickering emulsions stabilized by self-assembled bacteria–chitosan network. Langmuir 28:5729–5736

    Article  CAS  Google Scholar 

  27. Xu F, Fang Z, Yang D, Gao Y, Li H, Chen D (2014) Water in oil emulsion stabilized by tadpole-like single chain polymer nanoparticles and its application in biphase reaction. ACS Appl Mater Interfaces 6:6717–6723

    Article  CAS  Google Scholar 

  28. Okada M, Maeda H, Fujii S, Nakamura Y, Furuzono T (2012) Formation of pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase. Langmuir 28:9405–9412

    Article  CAS  Google Scholar 

  29. Menon VB, Wasan DT (1984) Coalescence of water-in-shale oil emulsions. Sep Sci Technol 19:555–574

    Article  CAS  Google Scholar 

  30. Eley DD, Hey MJ, Lee MA (1987) Rheological studies of asphaltene films adsorbed at the oil/water interface. Colloids Surf 24:173–182

    Article  CAS  Google Scholar 

  31. Eley DD, Hey MJ, Symonds JD (1988) Emulsions of water in asphaltene-containing oils. 1. Droplet size distribution and emulsification rates. Colloids Surf 32:87–101

    Article  CAS  Google Scholar 

  32. Eley DD, Hey MJ, Symonds JD (1988) Emulsions of water in asphaltene-containing oils. 2. Rheology. Colloids Surf 32:103–112

    Article  CAS  Google Scholar 

  33. Johansen EJ, Skjärvö IM, Lund T, Skjärvö J, Söderlund H, Boström G (1989) Water-in-crude oil emulsions from the norwegian continental shelf part I. Formation, characterization and stability correlations. Colloids Surf 34:353–370

    Article  CAS  Google Scholar 

  34. Neumann HJ, Paczynska-Lahme B (1996) Stability and demulsification of petroleum emulsions. Prog Colloid Polym Sci 101:101–104

    Article  CAS  Google Scholar 

  35. Chevalier Y, Bolzinger MA (2013) Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf A 439:23–34

    Article  CAS  Google Scholar 

  36. Hunter TN, Pugh RJ, Franks GV, Jameson GJ (2008) The Role of particles in stabilizing foams and emulsions. Adv Colloid Interface Sci 137:57–81

    Article  CAS  Google Scholar 

  37. Fujii S, Armes SP, Binks BP, Murakami R (2006) Stimulus-responsive particulate emulsifiers based on lightly cross-linked Poly(4-vinylpyridine)-silica nanocomposite microgels. Langmuir 22:6818–6825

    Article  CAS  Google Scholar 

  38. Fujii S, Read ES, Binks BP, Armes SP (2005) Stimulus-responsive emulsifiers based on nanocomposite microgel particles. Adv Mater 17:1014–1018

    Article  CAS  Google Scholar 

  39. Li J, Stöver HD (2008) Doubly pH-responsive pickering emulsion. Langmuir 24:13237–13240

    Article  CAS  Google Scholar 

  40. Dupin D, Armes SP, Connan C, Reeve P, Baxter SM (2007) How does the nature of the steric stabilizer affect the pickering emulsifier performance of lightly cross-linked, acid-swellable Poly (2-vinylpyridine) latexes? Langmuir 23:6903–6910

    Article  CAS  Google Scholar 

  41. Fujii S, Cai Y, Weaver JV, Armes SP (2005) Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers. J Am Chem Soc 127:7304–7305

    Article  CAS  Google Scholar 

  42. Dyab AK (2012) Destabilisation of pickering emulsions using pH. Colloids Surf A 402:2–12

    Article  CAS  Google Scholar 

  43. Wang M, Zhang K, Wu W, Chen J, Zhang P (2011) Synthesis of temperature-responsive hybrid capsules and their controlled release property. Colloids Surf A 385:126–133

    Article  CAS  Google Scholar 

  44. Zoppe JO, Venditti RA, Rojas OJ (2012) Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J Colloid Interface Sci 369:202–209

    Article  CAS  Google Scholar 

  45. Hwang K, Singh P, Aubry N (2010) Destabilization of pickering emulsions using external electric fields. Electrophoresis 31:850–859

    Article  CAS  Google Scholar 

  46. Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138:268–276

    Article  CAS  Google Scholar 

  47. Ma R, Wang B, Liu X, An Y, Li Y, He Z, Shi L (2007) Pyranine-induced micellization of Poly (ethylene glycol)-block-Poly (4-vinylpyridine) and pH-triggered release of pyranine from the complex micelles. Langmuir 23:7498–7504

    Article  CAS  Google Scholar 

  48. Fang Z, Yang D, Gao Y, Li H (2014) Massage ball-like, hollow porous Au/SiO2 microspheres templated by a pickering emulsion derived from polymer–metal hybrid emulsifier micelles. RSC Adv 4:49866–49872

    Article  CAS  Google Scholar 

  49. Sidorov SN, Bronstein LM, Kabachii YA, Valetsky PM, Soo PL, Maysinger D, Eisenberg A (2004) Influence of metalation on the morphologies of poly(ethylene oxide)-block-poly (4-vinylpyridine) block copolymer micelles. Langmuir 20:3543–3550

    Article  CAS  Google Scholar 

  50. Xu L, Shi L, Ma R, Zhang W, An Y, Zhu X (2007) Synthesis and micellization of thermo- and pH-responsive block copolymer of PNIPAM-b-P4VP. Polymer 48:1711–1717

    Article  CAS  Google Scholar 

  51. Nergiz SZ, Singamaneni S (2011) Reversible tuning of plasmon coupling in gold nanoparticle chains using ultrathin responsive polymer film. ACS Appl Mater Interfaces 3:945–951

    Article  CAS  Google Scholar 

  52. Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4:719–723

    Article  CAS  Google Scholar 

  53. Zhou X, Xu W, Liu G, Panda D, Chen P (2009) Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J Am Chem Soc 132:138–146

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from the National Natural Science Foundation of China (21174118, 20974090), the Key project of Education Department of Hunan Province (12A134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Yang, D., Gao, Y. et al. pH-responsible Pickering emulsion and its catalytic application for reaction at water–oil interface. Colloid Polym Sci 293, 1505–1513 (2015). https://doi.org/10.1007/s00396-015-3533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3533-8

Keywords

Navigation