Skip to main content
Log in

Influence of solvent chemistry on 1H NMR spectral and relaxation properties of a long-chain ionic surfactant in chloroform-d

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

1H NMR chemical shift, line width, indirect nuclear splitting value, peak area integration value, and spin–lattice and spin–spin relaxation times at 298 K are compared for low-concentration isotropic solutions of n-octylammonium n-octadecanoate prepared via different techniques and conditions using dried, distilled, and degassed deuterochloroform and the nontreated solvent containing tetramethylsilane. The nature of the variation of observed spectral parameters and relaxation/rotational behavior with chemical composition (presence of oxygen and other paramagnetic species, stabilizer, impurities, and degradation products) of the solvent, history of the solution, and sample containment are analyzed. Relaxation times are interpreted in terms of monomer structure and reorientation and internal rotation modes as a function of atomic position along the n-alkyl chains. Collectively, the relaxation behavior of the surfactant complies with the two-step model of fast picosecond internal rotations of different size segments containing methylene groups separated in timescale from slower large segment and overall molecular tumbling modes of the monomer. Fast motional phenomena do not appear to be appreciably influenced by the chemistry of the solvent in contrast to spectral parameters such as chemical shift and line width of the labile ammonium protons. A model is also presented to explain anomalous variation of the peak area integration value with chemical shift of the ammonium resonance peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pileni M-P (2003) Nat Mater 2:145–150

    Article  CAS  Google Scholar 

  2. Eastoe J, Hollamby MJ, Hudson L (2006) Adv Colloid Interface Sci 128–130:5–15

    Article  Google Scholar 

  3. Fendler JH, Fendler EH (1975) Catalysis in micellar and macromolecular systems. Academic, New York

    Google Scholar 

  4. Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, New York

    Book  Google Scholar 

  5. Clover AM (1923) J Am Chem Soc 45:3133–3138

    Article  CAS  Google Scholar 

  6. Desando MA, Lahajnar G, Sepe A (2010) J Colloid Interface Sci 345:338–345

    Article  CAS  Google Scholar 

  7. Vahcic M, Milacic R, Scancar J (2011) Anal Chim Acta 694:21–30

    Article  CAS  Google Scholar 

  8. Lu X, Winnik MA (2001) Chem Mater 13:3449–3463

    Article  CAS  Google Scholar 

  9. Della Guardia L, King AD Jr (1982) J Colloid Interface Sci 88:8–16

    Article  Google Scholar 

  10. Yushmanov VE, Tabak M (1997) J Colloid Interface Sci 191:384–390

    Article  CAS  Google Scholar 

  11. Nechypor OV, Gun’ko VM, Barvinchenko VN, Turov VV (2006) Biopolymers Cell 22:375–383

    Article  CAS  Google Scholar 

  12. Kupka T (2008) Magn Reson Chem 46:851–858

    Article  CAS  Google Scholar 

  13. Seno M, Araki K, Shiraishi S (1976) Bull Chem Soc Jpn 49:899–903

    Article  CAS  Google Scholar 

  14. Hoffmann MM, Conradi MS (1997) J Am Chem Soc 119:3811–3817

    Article  CAS  Google Scholar 

  15. Bumajdad A, Madkour M, Shaaban E, El Seoud OA (2013) J Colloid Interface Sci 393:210–218

    Article  CAS  Google Scholar 

  16. Gibby CW, Hall J (1931) J Chem Soc 691

  17. Desando MA, Walker S, Calderwood JH (1985) J Mol Liq 31:123–133

    Article  CAS  Google Scholar 

  18. Desando MA, Mallard C, Walker S (1988) J Mol Liq 37:167–179

    Article  CAS  Google Scholar 

  19. Fendler EJ, Fendler JH, Medary RT, El Seoud OA (1973) J Phys Chem 77:1432–1436

    Article  CAS  Google Scholar 

  20. Becker ED (1980) High resolution NMR: theory and chemical applications, 2nd edn. Academic, New York

  21. Desando MA, Ripmeester JA (2002) Fuel 81:1305–1319

    Article  CAS  Google Scholar 

  22. Burfield DR, Lee K-H, Smithers RH (1977) J Org Chem 42:3060–3065

    Article  CAS  Google Scholar 

  23. MacDonald DI, Boyack JR (1969) J Chem Eng Data 14:380–384

    Article  CAS  Google Scholar 

  24. Hu X (1997) Separation Sci Technol 32:2039–2050

  25. Desando MA (1981) Ph.D. Thesis, Dielectric and nuclear magnetic resonance studies of relaxation and micellization in alkylammonium carboxylate surfactant systems, University of Salford

  26. Heo GS, Bartsch RA (1982) J Org Chem 47:3557–3559

    Article  CAS  Google Scholar 

  27. Drobny JG (2006) Fluoroplastics Rapra Rev Rep Rep 184:16

    Google Scholar 

  28. Dupont (Jan. 2001) Teflon® Finishes in the chemical processing industry, permeation—its effects on fluoropolymer coatings, Technical Information Bulletin H-88495, pp 1-11

  29. Huibers PDT (1999) Langmuir 15:7546–7550

  30. Lin J-H, Chen W-S, Hou S-S (2013) J Phys Chem B 117:12076–12085

    Article  CAS  Google Scholar 

  31. Karplus M (1963) J Am Chem Soc 85:2870–2871

    Article  CAS  Google Scholar 

  32. Phillips L (1976) Nuclear magnetic resonance (n.m.r.) spectroscopy, In: Straughan BP and Walker S (eds), Chapman and Hall, London, vol. 1, pp 110-174

  33. Emsley JW, Feeney J, Sutcliffe LH (1966) High resolution nuclear magnetic resonance spectroscopy. Pergamon, London, vol. 2, p 678

  34. De Proft F, Langenaeker W, Geerlings P (1993) J Phys Chem 97:1826–1831

    Article  Google Scholar 

  35. Farrar TC, Becker ED (1971) Pulse and fourier transform NMR: introduction to theory and methods. Academic, New York

  36. Mirhej ME (1965) Can J Chem 43:1130–1138

    Article  CAS  Google Scholar 

  37. Battino R, Rettich TR, Tominaga T (1983) J Phys Chem Ref Data 12:163–178

    Article  CAS  Google Scholar 

  38. Yang XY, Chen H, Cheng GZ, Mao SZ, Liu ML, Luo PY, Du YR (2008) Colloid Polym Sci 286:639–646

    Article  CAS  Google Scholar 

  39. Anselmi C, Centini M, Scotton M, Sega A (1991) Can J Chem 69:913–918

    Article  CAS  Google Scholar 

  40. Oda R, Huc I, Candau SJ (1998) Agnew Chem Int Ed 37:2689–2691

    Article  CAS  Google Scholar 

  41. Shultz MD, Calvin S, Fatouros PP, Morrison SA, Carpenter EE (2007) J Magnetism Magnet Mat 311:464–468

    Article  CAS  Google Scholar 

  42. Fanum M (ed) (2010) Colloids in drug delivery, surfactant science series, CRC, Boca Raton FL, vol 148

Download references

Acknowledgments

We wish to express our grateful appreciation to Professor Dr. Janez Scancar (Department of Environmental Sciences, Jožef Stefan Institute) for the preparation and analysis of a sample of deuterochloroform by ICP-MS spectrometry. M.A. Desando wishes to thank Dr. Stanley Walker (Professor Emeritus, Department of Chemistry, Lakehead University, Thunder Bay, Canada) for the permission to use for further study a sample of surfactant synthesized by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Desando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desando, M.A., Lahajnar, G., Friedrich, M. et al. Influence of solvent chemistry on 1H NMR spectral and relaxation properties of a long-chain ionic surfactant in chloroform-d. Colloid Polym Sci 293, 1409–1423 (2015). https://doi.org/10.1007/s00396-014-3494-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3494-3

Keywords

Navigation