Skip to main content
Log in

Synthesis and characterization of latex nanoparticles using a visible-light photoinitiating system in reverse micelles

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This work shows the feasibility of using the photoinitiating system composed by the xanthene dye Eosin-Y and triethanolamine on the polymerization of acrylamide in benzyl-hexadecyl-dimethylammonium chloride (BHDC) reverse micelles. Molecular weights of polyacrylamide (MWPAA) in the order of 105 and conversions up to 90 % are obtained. The size of the latex particles is in the range of the nanometers (d < 50 nm). The effect of water content and concentrations of surfactant, amine, dye, and monomer on the particle size and MWPAA are examined. Only the amine and monomer concentrations affect the MWPAA. These results are interpreted on the basis of an exchange mechanism between micelles. Practically no effect on hydrodynamic diameters is observed when the value of MWPAA is doubled. This is ascribed to a supercoiled structure of PAA inside of micelles. Our results also suggest that the polymer properties can be modulated by appropriate combination of the dye/surfactant electrical charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

References

  1. Friberg S, Bothorel P (1987) Microemulsions: structure and dynamics. CRC, Boca Raton

    Google Scholar 

  2. Pavel FM (2004) Microemulsion polymerization. J Dispers Sci Technol 25:1–16

    Article  CAS  Google Scholar 

  3. Hentze H-P, Kaler EW (2003) Polymerization of and within self-organized media. Curr Opin Colloid Interface Sci 8:164–178

    Article  CAS  Google Scholar 

  4. Munshi N, De TK, Maitra A (1997) Size modulation of polymeric nanoparticles under controlled dynamics of microemulsion droplets. J Colloid Interface Sci 190:387–391

    Article  Google Scholar 

  5. Vakurov A, Pchelintsev NA, Forde J, Ó’Fágáin C, Gibson T, Millner P (2009) The preparation of size-controlled functionalized polymeric nanoparticles in micelles. Nanotechnol 20(295605):1–7

    Google Scholar 

  6. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  7. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15

    Article  Google Scholar 

  8. Nimesh S, Manchanda R, Kumar R, Saxena A, Chaudhary P, Yadav V, Mozumdar S, Chandra R (2006) Preparation, characterization and in vitro drug release studies of novel polymeric nanoparticles. Int J Pharm 323:146–152

    Article  CAS  Google Scholar 

  9. Candau F, Leong YS, Pouyet G, Candau S (1984) Inverse microemulsion polymerization of acrylamide: characterization of the water-in-oil microemulsions and the final microlatexes. J Colloid Interface Sci 101:167–183

    Article  CAS  Google Scholar 

  10. Candau F, Leong YS, Fitch RM (1985) Kinetic study of the polymerization of acrylamide in inverse microemulsion. J Polym Sci: Polym Chem Ed 23:193–214

    CAS  Google Scholar 

  11. Grotzinger C, Burget D, Jacques P, Fouassier JP (2003) Visible light induced photopolymerization: speeding up the rate of polymerization by using co-initiators in dye/amine photoinitiating systems. Polym 44:3671–3677

    Article  CAS  Google Scholar 

  12. Ibrahim A, Ley C, Tarzi OI, Fouassier JP, Allonas X (2010) Visible light photoinitiating systems: toward a good control of the photopolymerization efficiency. J Photopolym Sci Technol 23:101–108

    Article  CAS  Google Scholar 

  13. Tarzi OI, Allonas X, Ley C, Fouassier JP (2010) Pyrromethene derivatives in three-component photoinitiating systems for free radical photopolymerization. J Polym Sci Part A: Polym Chem 48:2594–2603

    Article  CAS  Google Scholar 

  14. Zhang G, Song IY, Ahn KH, Park T, Choi W (2011) Free radical polymerization initiated and controlled by visible light photocatalysis at ambient temperature. Macromol 44:7594–7599

    Article  CAS  Google Scholar 

  15. Previtali CM, Bertolotti SG, Neumann MG, Pastre IA, Rufs AM, Encinas MV (1994) Laser flash photolysis study of the photoinitiator system safranine t-aliphatic amines for vinyl polymerization. Macromol 27:7454–7458

    Article  CAS  Google Scholar 

  16. Encinas MV, Rufs AM, Neumann MG, Previtali CM (1996) Photoinitiated vinyl polymerization by safranine T/triethanolamine in aqueous solution. Polym 37:1395–1398

    Article  CAS  Google Scholar 

  17. Rivarola CR, Bertolotti SG, Previtali CM (2001) Polymerization of acrylamide photoinitiated by tris(2,2′-bipyridine)ruthenium(II)–amine in aqueous solution: effect of the amine structure. J Polym Sci Part A: Polym Chem 39:4265–4273

    Article  CAS  Google Scholar 

  18. Gómez ML, Previtali CM, Montejano HA, Bertolotti SG (2007) Photoreaction and photopolymerization studies on phenoxazin dyes/diphenyliodonium chloride salt. J Photochem Photobiol A: Chem 188:83–89

    Article  Google Scholar 

  19. Encinas MV, Rufs AM, Bertolotti SG, Previtali CM (2009) Xanthene dyes/amine as photoinitiators of radical polymerization: a comparative and photochemical study in aqueous médium. Polym 50:2762–2767

    Article  CAS  Google Scholar 

  20. Carver MT, Dreyer U, Knoesel R, Candau F (1989) Kinetics of photopolymerization of acrylamide in AOT reverse micelles. J Polym Sci Part A: Polym Chem 27:2161–2177

    Article  CAS  Google Scholar 

  21. Grätzel CK, Jirousek M, Grätzel M (1986) Photoredox-induced polymerization of microemulsion droplets. Langmuir 2:292–296

    Article  Google Scholar 

  22. Porcal GV, Arbeloa EM, Chesta CA, Bertolotti SG, Previtali CM (2013) Visible light photopolymerization in BHDC reverse micelles. Laser flash photolysis study of the photoinitiating mechanism. J Photochem Photobiol A: Chem 257:60–65

    Article  CAS  Google Scholar 

  23. Porcal GV, Arbeloa EM, Orallo DE, Bertolotti SG, Previtali CM (2011) Photophysics of safranine-O and phenosafranine in reverse micelles of BHDC. J Photochem Photobiol A: Chem 226:51–56

    Article  CAS  Google Scholar 

  24. Fouassier JP, Chesneau E (1991) Polymérisation induite sous irradiation laser visible, 4. Le système éosine/photoamorceur ultra-violet/amine. Makromol Chem 192:245–260

    Article  CAS  Google Scholar 

  25. Kumar SG, Neckers DC (1991) Laser-induced three-dimensional photopolymerization using visible initiators and UV cross-linking by photosensitive comonomers. Macromol 24:4322–4327

    Article  CAS  Google Scholar 

  26. Mallavia R, Amat-Guerri F, Fimia A, Sastre R (1994) Synthesis and evaluation as a visible-light polymerization photoinitiator of a new Eosin ester with an O-benzoyl-α-oxooxime group. Macromol 27:2643–2646

    Article  CAS  Google Scholar 

  27. Burget D, Fouassier JP, Amat-Gerri F, Mallavia R, Sastre R (1999) Enhanced activity as polymerization photoinitiators of Rose Bengal and Eosin esters with an O-benzoyl-α-oxooxime group: the role of the excited state reactivity. Acta Polym 50:337–346

    Article  CAS  Google Scholar 

  28. Popielarz R, Vogt O (2008) Effect of coinitiator type on initiation efficiency of two-component photoinitiator systems based on Eosin. J Polym Sci Part A: Polym Chem 46:3519–3532

    Article  CAS  Google Scholar 

  29. Neumann MG, Schmitt CC, Maciel H (2005) The photopolymerization of styrenesulfonate initiated by dyes. The effect of monomer aggregation. J Photochem Photobiol A: Chem 175:15–21

    Article  CAS  Google Scholar 

  30. Avens HJ, Randle TJ, Bowman CN (2008) Polymerization behavior and polymer properties of eosin-mediated surface modification reactions. Polym 49:4762–4768

    Article  CAS  Google Scholar 

  31. Avens HJ, Bowman CN (2009) Mechanism of cyclic dye regeneration during eosin-sensitized photoinitiation in the presence of polymerization inhibitors. J Polym Sci Part A: Polym Chem 47:6083–6094

    Article  CAS  Google Scholar 

  32. Arbeloa EM, Porcal GV, Bertolotti SG, Previtali CM (2013) Effect of the interface on the photophysics of eosin-Y in reverse micelles. J Photochem Photobiol A: Chem 252:31–36

    Article  CAS  Google Scholar 

  33. Jada A, Lang J, Zana R (1990) Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents. 1. Water solubility studies. J Phys Chem 94:381–387

    Article  CAS  Google Scholar 

  34. Hou M-J, Shah DO (1987) Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil microemulsions. Langmuir 3:1086–1096

    Article  CAS  Google Scholar 

  35. Hosier IL, Vaughan AS, Mitchell GR, Siripitayananon J, Davis FJ (2004) Polymer characterization. In: Davis FJ (ed) Polymer chemistry. Oxford University Press, New York, pp 1–67

    Google Scholar 

  36. Gnanou Y, Fontanille M (2008) Determination of molar masses and study of conformations and morphologies by physical methods. In: Gnanou Y, Fontanille M (eds) Organic and physical chemistry of polymers. Wiley, Hoboken, pp 147–211

    Chapter  Google Scholar 

  37. Levillain P, Fompeydie D (1985) Determination of equilibrium constants by derivative spectrophotometry. Application to the pK, s of Eosin. Anal Chem 57:2561–2563

    Article  CAS  Google Scholar 

  38. Jada A, Lang J, Zana R, Makhloufi R, Hirsch E, Candau SJ (1990) Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents. 2. Droplet sizes and interactions and exchange of material between droplets. J Phys Chem 94:387–395

    Article  CAS  Google Scholar 

  39. Bommarius AS, Holzwarth JF, Wang DIC, Hatton TA (1990) Coalescence and solubilizate exchange in a cationic four-component reversed micellar system. J Phys Chem 94:7232–7239

    Article  CAS  Google Scholar 

  40. ISO (1996) Methods for determination of particle size distribution part 8: photon correlation spectroscopy. In: International Standard ISO13321. International Organisation for Standardisation (ISO)

  41. Dahneke BE (1983) Measurement of suspended particles by quasi-elastic light scattering. Wiley, Minnesota

    Google Scholar 

  42. Naghash HJ, Okay O (1996) Formation and structure of polyacrylamide gels. J Appl Polym Sci 60:971–979

    Article  CAS  Google Scholar 

  43. Gao D, Agayan RR, Xu H, Philbert MA, Kopelman R (2006) Nanoparticles for two-photon photodynamic therapy in living cells. Nanolett 6:2383–2386

    Article  CAS  Google Scholar 

  44. Gao D, Xu H, Philbert MA, Kopelman R (2007) Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Angew Chem Int Ed 46:2224–2227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from CONICET (PIP 2010–0284) and Universidad Nacional de Río Cuarto is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Maximiliano Arbeloa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbeloa, E.M., Porcal, G.V., Bertolotti, S.G. et al. Synthesis and characterization of latex nanoparticles using a visible-light photoinitiating system in reverse micelles. Colloid Polym Sci 293, 625–632 (2015). https://doi.org/10.1007/s00396-014-3453-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3453-z

Keywords

Navigation