Skip to main content
Log in

A kinetics-controlled coating method to construct 1D attapulgite @ amorphous titanium oxide nanocomposite with high electrorheological activity

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new kind of one-dimension attapulgite (APG) @ titanium oxide nanoparticles was prepared via kinetics-controlled coating method. By simply altering the ammonia content and reaction time to control the kinetics of hydrolysis and condensation of tetra-n-butyl titanate (TBOT) in ethanol/ammonia mixtures, amorphous titanium oxide nanoparticles can adhere to the APG rods firmly, and the thickness of uniform amorphous titanium oxide shells can be adjusted from 0 to 40 nm. The obtained APG@ titanium oxide nanorods were applied as a new electrorheological (ER) fluid, which showed a promising ER activity. The yield stresses of the APG@ titanium oxide nanorod (40-nm shell thickness) ER fluid under electric field was 2.1 times of the granular titanium oxide ER fluid and 4.1 times of the APG ER fluid. And, the APG@ titanium oxide nanorod ER fluid also exhibited distinctly improved suspended stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140

    Article  CAS  Google Scholar 

  2. Block H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661–1667

    Article  CAS  Google Scholar 

  3. Halsey TC (1992) Electrorheological fluids. Science 258:761–766

    Article  CAS  Google Scholar 

  4. Hao T (2001) Electrorheological fluids. Adv Mater 13:1847–1857

    Article  CAS  Google Scholar 

  5. Wang BX, Zhao XP (2003) Preparation of kaolinite/titania coated nanocomposite particles and their electrorheological properties. J Mater Chem 13:2248–2253

    Article  CAS  Google Scholar 

  6. Kim JW, Cho YH, Lee HG, Choi SB (2002) Electrorheological semi-active damper: polyaniline based ER system. J Intell Mater Syst Struct 13:509–513

    Article  CAS  Google Scholar 

  7. Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect. Langmuir 19:5875–5881

    Article  CAS  Google Scholar 

  8. Block H, Kelly JP (1986) Electro-rheological fluids. UK Patent 217051B

  9. Gow C, Zukoski CF (1990) The electrorheological properties of polyaniline suspensions. J Colloid Interf Sci 136:175–188

    Article  CAS  Google Scholar 

  10. Xie HQ, Guan JG (1996) Study on electrorheological properties of semiconducting polyaniline-based suspensions. Angew Makromol Chem 235:21–34

    Article  CAS  Google Scholar 

  11. Quadrat O, Stejskal J, Kratochvíl P, Klason C, McQueen D, Kubát J, Sáha P (1998) Electrical properties of polyaniline suspension. Synth Met 97:37–42

    Article  CAS  Google Scholar 

  12. Kuramoto N, Yamazaki M, Nagai K, Koyama K, Tanaka K, Yatsuzuka K, Higashiyama Y (1994) Electrorheological property of a polyaniline-coated silica suspension. Thin Solid Films 239:169–171

    Article  CAS  Google Scholar 

  13. Cho MS, Choi HJ, To K (1998) Effect of ionic pendent groups on a polyaniline-based electrorheological fluid. Macromol Rapid Commun 19:271–273

    Article  CAS  Google Scholar 

  14. Lu J, Zhao XP (2002) Electrorheological properties of a polyaniline montmorillonite clay nanocomposite suspension. J Mater Chem 12:2603–2605

    Article  CAS  Google Scholar 

  15. Cho MS, Kim JW, Choi HJ, Jhon MS (2005) Polyaniline and its modification for electroresponsive material under applied electric fields. Polym Adv Technol 6:352–356

    Article  Google Scholar 

  16. Lu J, Zhao XP (2004) A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline. J Colloid Interface Sci 273:651–657

    Article  CAS  Google Scholar 

  17. Fang FF, Lee BM, Choi HJ (2010) Electrorheologically intelligent polyaniline and its composites. Macromol Res 18:99–112

    Article  Google Scholar 

  18. Yin JB, Zhao XP, Xia X, Xiang LQ, Qiao YP (2008) Electrorheological fluids based on nano-fibrous polyaniline. Polymer 49:4413–4419

    Article  CAS  Google Scholar 

  19. Liu YD, Fang FF, Choi HJ (2010) Core-shell structured semiconducting PMMA/Polyaniline snowman-like anisotropic microparticles and their electrorheology. Langmuir 26:12849–12854

    Article  CAS  Google Scholar 

  20. Yin JB, Xia X, Xiang LQ, Qiao YP, Zhao XP (2009) The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions. Smart Mater Struct 18:095007–0950011

    Article  Google Scholar 

  21. Xia X, Yin JB, Qiang PF, Zhao XP (2011) Electrorheological properties of thermo-oxidative polypyrrole nanofibers. Polymer 52:786–792

    Article  CAS  Google Scholar 

  22. Kim YD, Kim JH (2008) Synthesis of polypyrrole-polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions. Colloid Polym Sci 286:631–637

    Article  CAS  Google Scholar 

  23. Stenicka M, Pavlinek V, Saha P, Blinova NV, Stejskal J, Quadrat O (2009) The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid Polym Sci 287:403–412

    Article  CAS  Google Scholar 

  24. Yin JB, Zhao XP (2006) Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity. Nanotechnology 17:192–196

    Article  CAS  Google Scholar 

  25. Yin JB, Zhao XP (2008) Electrorheological properties of titanate nanotube suspensions. Colloids Surf A 329:153–160

    Article  CAS  Google Scholar 

  26. He Y, Cheng Q, Pavlínek V, Li C, Sáha P (2009) Synthesis and electrorheological characteristics of titanate nanotube suspensions under oscillatory shear. J Ind Eng Chem 15:550–554

    Article  CAS  Google Scholar 

  27. Lozano K, Hernandez C, Petty TW, Sigman MB, Korgel B (2006) Electrorheological analysis of nano laden suspensions. J Colloid Interface Sci 297:618–624

    Article  CAS  Google Scholar 

  28. Ramos-Tejada MM, Espin MJ, Perea R, Delgado AV (2009) Electrorheology of suspensions of elongated goethite particles. J Non-Newtonian Fluid 159:34–40

    Article  CAS  Google Scholar 

  29. Cheng YC, Wu KH, Liu FH, Guo JJ, Liu XH, Xu GJ, Cui P (2010) Facile approach to large-scale synthesis of 1D calcium and titanium precipitate (CTP) with high electrorheological activity. ACS Appl Mater Interf 2:621–625

    Article  CAS  Google Scholar 

  30. Sedlacik M, Mrlik M, Kozakova Z, Pavlinek V, Kuritka I (2013) Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid Polym Sci 291:1105–1111

    Article  CAS  Google Scholar 

  31. Yin JB, Xia X, Xiang LQ, Zhao XP (2010) Coaxial cable-like polyaniline@titania nanofibers: facile synthesis and low power electrorheological fluid application. J Mater Chem 20:7096–7099

    Article  CAS  Google Scholar 

  32. Liu YD, Fang FF, Choi HJ (2010) Silica nanoparticle decorated conducting polyaniline fibers and their electrorheology. Mater Lett 64:154–156

    Article  CAS  Google Scholar 

  33. Cheng QL, Pavlinek V, He Y, Li CZ, Saha P (2009) Electrorheological characteristics of polyaniline/titanate composite nanotube suspensions. Colloid Polym Sci 287:435–441

    Article  CAS  Google Scholar 

  34. Luo M, He Y, Cheng Q, Li C (2010) Synthesis and structural and electrical characteristics of polypyrrole nanotube/TiO2 hybrid composites. J Macromol Sci B Phys 49:419–428

    Article  CAS  Google Scholar 

  35. Cheng YC, Guo JJ, Xu GJ, Cui P, Liu XH, Liu FH, Wu JH (2008) Electrorheological property and microstructure of acetamide-modified TiO2 nanoparticles. Colloid Polym Sci 286:1493–1497

    Article  CAS  Google Scholar 

  36. Fang FF, Liu YD, Choi HJ (2013) Electrorheological and magnetorheological response of polypyrrole/magnetite nanocomposite particles. Colloid Polym Sci 291:1781–1786

    Article  CAS  Google Scholar 

  37. Zhang WL, Choi HJ (2013) Fabrication and electrorheology of graphene oxide/ionic N-substituted copolyaniline composite. Colloid Polym Sci 291:1401–1408

    Article  CAS  Google Scholar 

  38. Zhang K, Zhang WL, Choi H (2013) Facile fabrication of self-assembled PMMA/graphene oxide composite particles and their electroresponsive properties. Colloid Polym Sci 291:955–962

    Article  CAS  Google Scholar 

  39. Mrlik M, Pavlinek V, Saha P, Quadrat O (2011) Electrorheological properties of suspension of polypyrrole-coated titanate nanorods. Appl Rheol 21:52365

    Google Scholar 

  40. Lu XF, Zhang WJ, Wang C, Wen TC, Wei Y (2011) One dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712

    Article  CAS  Google Scholar 

  41. Wen WJ, Huang XX, Yang SH, Lu KQ, Sheng P (2003) The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2:727–730

    Article  CAS  Google Scholar 

  42. Lu KQ, Shen R, Wang XZ, Sun G, Wen WJ (2005) The electrorheological fluids with high shear stress. Int J Mod Phys B 19:1065–1070

    Article  CAS  Google Scholar 

  43. Lu Y, Shen R, Wang XZ, Sun G, Lu KQ (2009) The synthesis and electrorheological effect of a strontium titanyl oxalate suspension. Smart Mater Struct 18:025012

    Article  Google Scholar 

  44. Wang BX, Zhao Y, Zhao XP (2007) The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles. Colloids Surf A 295:27–33

    Article  CAS  Google Scholar 

  45. Qiao YP, Yin JB, Zhao XP (2007) Oleophilicity and the strong electrorheological effect of surface-modified titanium oxide nano-particles. Smart Mater Struct 16:332–339

    Article  CAS  Google Scholar 

  46. Lu KQ, Shen R, Wang XZ, Sun G, Wen WJ, Liu JX (2006) Polar molecule dominated electrorheological effect. Chin Phys 15:2476–2480

    Article  CAS  Google Scholar 

  47. Liu FH, Xu GJ, Wu JH, Cheng YC, Guo JJ, Cui P (2010) Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles. Colloid Polym Sci 288:1739–1744

    Article  CAS  Google Scholar 

  48. Cao GJ, Shen M, Zhou LW (2006) Electrorheological properties of triethanolamine modified amorphous TiO2 electrorheological fluid. J Solid State Chem 179:1565–1568

    Article  CAS  Google Scholar 

  49. Wang WB, Wang FF, Kang YR, Wang AQ (2013) Facile self-assembly of Au nanoparticles on a magnetic attapulgite/Fe3O4 composite for fast catalytic decoloration of dye. Rsc Adv 3:11515–11520

  50. Xu JX, Wang WB, Wang AQ (2013) Effects of solvent treatment and high-pressure homogenization process on dispersion properties of palygorskite. Powder Technol 235:652–660

  51. Yin YC, Liu CJ, Wang BX, Yu SS, Chen KZ (2013) The synthesis and properties of bifunctional and intelligent Fe3O4@titanium oxide core/shell nanoparticles. Dalton T 42:7233–7240

    Article  CAS  Google Scholar 

  52. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  53. Barringer EA, Bowen HK (1985) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical-properties. Langmuir 1:414–420

    Article  CAS  Google Scholar 

  54. Soloviev A, Jensen H, Sogaard EG, Kanaev AV (2003) Aggregation kinetics of sol-gel process based on titanium tetraisopropoxide. J Mater Sci 38:3315–3318

    Article  CAS  Google Scholar 

  55. Li W, Yang JP, Wu ZX, Wang JX, Li B, Feng SS, Deng YH, Zhang F, Zhao DY (2012) A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. J Am Chem Soc 134:11864–11867

    Article  CAS  Google Scholar 

  56. Bogush G, Zukoski C (1991) studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J Colloid Interf Sci 142:1–18

    Article  CAS  Google Scholar 

  57. Wu WS, Fan QH, Xu JZ, Niu ZW, Lu SS (2007) Sorption-desorption of Th(IV) on attapulgite: effects of pH, ionic strength and temperature. Appl Radiat Isotopes 65:1108–1114

    Article  CAS  Google Scholar 

  58. Kanu RC, Shaw MT (1998) Enhanced electrorheological fluids using anisotropic particles. J Rheol 42:657–670

    Article  CAS  Google Scholar 

  59. Lengalova A, Pavlinek V, Saha P, Stejskal J, Kitano T, Quadrat O (2003) The effect of dielectric properties on the electrorheology of suspensions of silica particles coated with polyaniline. Physica A 321:411–424

    Article  CAS  Google Scholar 

  60. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  61. Tsuda K, Takeda Y, Ogura H, Otsubo Y (2007) Electrorheological behavior of whisker suspensions under oscillatory shear. Colloids Surf A 299:262–267

    Article  CAS  Google Scholar 

  62. Shen M, Cao JG, Xue HT, Huang JP, Zhou LW (2006) Structure of polydisperse electrorheological fluids: experiment and theory. Chem Phys Lett 423:165–169

    Article  CAS  Google Scholar 

  63. Bell RC, Karli JO, Vavreck AN, Zimmerman DT, Ngatu GT, Wereley NM (2008) Magnetorheology of submicron diameter iron microwires dispersed in silicone oil. Smart Mater Struct 17:015028

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the National Natural Science Foundation of China (21203225, 21003145, 11204325), the Ningbo Municipality (2009B21005), the Zhejiang Provincial Natural Science Foundation (LQ12A04005), the Ningbo Natural Science Foundation (2012A610128), and the Major Project technology Foundation of Zhejiang Provincial (2012C01034-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, F., Xu, G. et al. A kinetics-controlled coating method to construct 1D attapulgite @ amorphous titanium oxide nanocomposite with high electrorheological activity. Colloid Polym Sci 292, 3327–3335 (2014). https://doi.org/10.1007/s00396-014-3384-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3384-8

Keywords

Navigation